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@ In Facebook's Memcached deployment,

o Median latency is 100us, but 95 percentile latency > 1ms.

In this talk, we will explore

@ Why some requests take longer than expected?

@ What causes them to get delayed?
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Why is the Tail important?

o Low latency is crucial for interactive services.
e 500ms delay can cause 20% drop in user traffic. [Google Study]

e Latency is directly tied to traffic, hence revenue.

@ What makes it challenging is today's datacenter workloads.

@ Interactive services are highly parallel.

@ Single client request spawns thousands of sub-tasks.
e Overall latency depends on slowest sub-task latency.

e Bad Tail = Probability of any one sub-task getting delayed is high.




A real-life example

Data dependency DAG for a small request

Nishtala et. al. Scaling memcache at Facebook, NSDI 2013.




A real-life example

All requests have to finish within the SLA latency. |

Data dependency DAG for a small request

Nishtala et. al. Scaling memcache at Facebook, NSDI 2013.




What is Tail Latency?
What can we do?

@ People in industry have worked hard on solutions.

o Hedged Requests [Jeff Dean et. al.]
e Effective sometimes, but adds application specific complexity.

@ Intelligently avoid slow machines
o Keep track of server status; route requests around slow nodes.




What is Tail Latency?
What can we do?

@ People in industry have worked hard on solutions.

Hedged Requests [Jeff Dean et. al.]
e Effective sometimes, but adds application specific complexity.

Intelligently avoid slow machines
o Keep track of server status; route requests around slow nodes.

Attempts to build predictable response out of less predictable parts.

We still don’t know what is causing requests to get delayed.




s B
Our Approach

© Pick some real life applications: RPC Server, Memcached, Nginx.
@ Generate the ideal latency distribution.

© Measure the actual distribution on a standard Linux server.

@ lIdentify a factor causing deviation from ideal distribution.

@ Explain and mitigate it.

@ lterate over this till we reach the ideal distribution.




What is Tail Latency?
Rest of the Talk

@ Introduction
© Predicted Latency from Queuing Models

© Measurements: Sources of Tail Latencies

@ Summary
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Predicted Latency from Queuing Models Ideal latency distribution

What is the ideal latency for a network server?

o ldeal baseline for comparing measured performance.

@ Assume a simple model, and apply queuing theory.

o

Clients Server

@ Given the arrival distribution and request processing time,

@ We can predict the time spent by a request in the server.
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@ Assume a server with single worker with 50 us fixed processing time.
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Inherent tail latency due to request burstiness.
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@ Assume a server with single worker with 50 us fixed processing time.
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What is the ideal latency distribution?

@ Assume a server with single worker with 50 us fixed processing time.
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Additional workers can reduce tail latency, even at constant utilization.
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© Measurements: Sources of Tail Latencies




Testbed

@ Cluster of standard datacenter machines.
e 2 x Intel L5640 6 core CPU
e 24 GB of DRAM
e Mellanox 10Gbps NIC
o Ubuntu 12.04, Linux Kernel 3.2.0

@ All servers connected to a single 10 Gbps ToR switch.

@ One server runs Memcached, others run workload generating clients.

@ Other application results are in the paper.




Timestamping Methodology

@ Append a blank buffer = 32 bytes to each request.

@ Overwrite buffer with timestamps as it goes through the server.

Incoming After TCP/UDP Memcached thread
Server NIC processing scheduled on CPU
. ¥ ¥
Outgoing Memcached Memcached
Server NIC write() read() return

@ Very low overhead and no server side logging.
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How can background processes affect tail latency?

@ Memcached threads time-share a CPU core with other processes.

@ We need to wait for other processes to relinquish CPU.

@ Scheduling time-slices are usually couple of milliseconds.




Measurements: Sources of Tail Latencies

How can background processes affect tail latency?

@ Memcached threads time-share a CPU core with other processes.
@ We need to wait for other processes to relinquish CPU.

@ Scheduling time-slices are usually couple of milliseconds.

How can we mitigate it?

@ Raise priority (decrease niceness) = More CPU time.

@ Upgrade scheduling class to real-time = Pre-emptive power.

@ Run on a dedicated core = No interference what-so-ever.
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Impact of Background Processes
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Impact of Background Processes
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Impact of Background Processes
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Measurements: Sources of Tail Latencies

Does adding more CPU cores improve tail latency?

@ Yes it does! Provided we maintain a single queue abstraction.

@ Memcached partitions requests statically among threads.

Clients Server Clients Server

Ideal Model Memcached Architecture

How can we mitigate it?

@ Modify Memcached concurrency model to use a single queue.




Measurements: Sources of Tail Latencies

Impact of Multicore Concurrency Model
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@ By default, Linux irgbalance spreads interrupts across all cores.

@ OS pre-empts Memcached threads frequently.

@ Introduces extra context switching overheads and cache pollution.




Measurements: Sources of Tail Latencies

How can interrupts affect tail latency?

@ By default, Linux irgbalance spreads interrupts across all cores.
@ OS pre-empts Memcached threads frequently.

@ Introduces extra context switching overheads and cache pollution.

How can we mitigate it?

@ Separate cores for interrupt processing and application threads.

@ 3 cores run Memcached threads, and 1 core processes interrupts.
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Impact of Interrupt Processing

10° &

—+— 4 core |deal Model
< 107 F —=e— 4 core Linux - Interrupt spread
}I\

X .2
o 10° F 4
L
8 10°F ]
@]
4 | |
10 Ll ] ] ]

10 10? 10° 10
Latency in micro-seconds

Single CPU, 4 cores, Memcached running at 80% utilization.




Measurements: Sources of Tail Latencies

Impact of Interrupt Processing

10° &
—+— 4 core Ideal Model
< 107 F —=e— 4 core Linux - Interrupt spread
n —*— 4 core Linux - Separate
=< Interrupt core
T 10?2 F .
[T
8 10°F ]
&)
4 | |
10 wul 1 1 ]

10 10? 10° 10
Latency in micro-seconds

Single CPU, 4 cores, Memcached running at 80% utilization.




Measurements: Sources of Tail Latencies

Impact of Interrupt Processing
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Measurements: Sources of Tail Latencies

Other sources of tail latency

Source of Tail Latency

Underlying Cause

Thread Scheduling Policy

NUMA Effects

Hyper-threading

Power Saving Features

Non-FIFO ordering of requests.

Increased latency across NUMA nodes.

Contending hyper-threads can increase
latency.

Extra time required to wake CPU from
idle state.
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Summary and Future Works

@ We explored hardware, OS and application-level sources of tail latency.
@ Pin-point sources using finegrained timestaming, and an ideal model.

@ We obtain substantial improvements, close to ideal distributions.

@ 99.9th percentile latency of Memcached from 5 ms to 32 us.




Summary and Future Works

We explored hardware, OS and application-level sources of tail latency.
@ Pin-point sources using finegrained timestaming, and an ideal model.

@ We obtain substantial improvements, close to ideal distributions.

99.9th percentile latency of Memcached from 5 ms to 32 us.

Sources of tail latency in multi-process environment.

How does virtualization effect tail latency?

@ Overhead of virtualization, interference from other VMs.

@ New effects when moving to a distributed setting, network effects.
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