
Data Analytics

Dan Ports, CSEP 552

Today
• MapReduce

• is it a major step backwards?

• beyond MapReduce: Dryad

• Other data analytics systems:

• Machine learning: GraphLab

• Faster queries: Spark

MapReduce Model
• input is stored as a set of key-value pairs (k,v)

• programmer writes map function  
 map(k,v) -> list of (k2, v2) pairs  
 gets run on every input element

• hidden shuffle phase:  
group all (k2, v2) pairs with the same key

• programmer writes reduce function  
 reduce(k2, set of values) -> output pairs (k3,v3)

MapReduce implementation

MapReduce article
• Mike Stonebraker (Berkeley -> MIT)

• built one of first relational DBs (Ingres) & 
many subsequent systems:  
Postgres, Mariposa, Aurora, C-Store, H-Store, ..

• many startups: Illustra, Streambase, Vertica, VoltDB

• 2014 Turing award

• David DeWitt (Wisconsin -> Microsoft)

• parallel databases, database performance

Discussion

• Is MapReduce a major step backwards?

• Are database researchers incredibly bitter?

• Are systems researchers ignorant of 50 years of
database work?

Systems vs Databases
• two generally separate streams of research

• distributed systems are relevant to both

• much distributed systems research follows
from OS community, including MapReduce

• (I have worked on both)

The database tradition
• Top-down design

• Most important: define the right semantics first

• e.g., relational model and abstract language (SQL)

• e.g., concurrency properties (serializability)

• …then figure out how to implement them

• usually in a general purpose system

• making them fast comes later

• Provide general interfaces for users

The OS tradition
• Bottom-up design

• Most important: engineering elegance

• simple, narrow interfaces

• clean, efficient implementations

• performance and scalability first-class concerns

• Figuring out the semantics is secondary

• Provide tools for programmers to build systems

• Where does MapReduce fit into this?

• Does this help explain the critique?

MapReduce Critiques
• Not as good as a database interface

• no schema; uses imperative language instead of
declarative

• Poor implementation: no indexes, can’t scale

• Not novel

• Missing DB features & incompatible with existing DB tools

• loading, indexing, transactions, constraints, etc

• Is MapReduce even a database?

• Is this an apples-to-oranges comparison?

• Should Google have built a scalable database
instead of MR?

MapReduce vs DBs

• Maybe not that far off?

• Languages atop MapReduce for simplified  
(either declarative or imperative) queries:

• Sawzall (Google); Pig (Yahoo), Hive (Facebook)

• often involve adding schema to data

(My) lessons from MapReduce

• Specializing the system to focus on a particular
type of processing makes the problem tractable

• Map/reduce functional model supports writing
easier parallel code  
(though so does the relational DB model!)

• Fault-tolerance is easy when computations are
idempotent and stateless: just reexecute!

Non-lesson
• The map and reduce phases are not fundamental

• Don’t need to follow the pattern  
input -> map -> shuffle -> reduce -> output

• Some computations can’t be expressed in this
model

• but could generalize MapReduce to handle them

Example
• 1. score webpages by words they contain 

2. score webpages by # of incoming links 
3. combine the two scores  
4. sort by combined score

• would require multiple MR runs, probably 1 per step

• step 3 has 2 inputs; MR supports only one

• MR requires writing output & intermed results to disk

Dryad
• MSR system that generalizes

MapReduce

• Observation: MapReduce
computation can be  
visualized as a DAG

• vertexes are inputs, outputs,
or computation workers

• edges are communication
channels

Dryad
• Arbitrary programmer-

specified graphs

• inputs, outputs =  
set of typed items

• edges are channels  
(TCP, pipe, temp file)

• intermediate processing
vertexes can have several
inputs and outputs

Dryad implementation
• Similar to MapReduce

• vertices are stateless, deterministic computations

• no cycles means that after a failure, can just
rerun a vertex’s computation

• if its inputs are lots, rerun upstream vertices
(transitively)

Programming Dryad

• Don’t want programmers to directly write graphs

• also built DryadLINQ, an API that integrates with
programming languages (e.g., C#)

DryadLINQ example
• Word frequency: count occurrences of each word,

return top 3
public static IQueryable<Pair> Histogram(input, k){
 var words = input.SelectMany(x => x.Split(' '));
 var groups = words.GroupBy(x => x);
 var counts = groups.Select(x => new Pair(x.Key, x.Count()));
 var ordered = counts.OrderByDescending(x => x.Count);
 var top = ordered.Take(k);
 return top;
}

DryadLINQ example

Machine Learning:
GraphLab

• ML and data mining are hugely popular areas now!

• clustering, modeling, classification, prediction

• Need to run these algorithms on huge data sets

• Means that we need to run them on distributed
systems

• Need new distributed systems abstractions

Example: PageRank

• Assign a score to each webpage

• Update the score:  
 
 

• Repeat until converged

What’s the right abstraction?
• Message-passing & threads? (MPI/pthreads)

• leaves all the hard work to the programmer!  
fault tolerance, load balancing, locking, races

• MapReduce?

• fails when there are computational dependencies in data (Dryad
can help)

• fails when there is an iterative structure

• rerun until it converges? programmer has to deal with this!

• GraphLab: computational model for graphs

Why graphs?
• most ML/DM applications are amenable to graph

structuring

• ML/DM is often about dependencies between data

• represent each data item as a vertex

• represent each dependency between two pieces
of data as an edge

Graph representation
• graph = vertices + edges, each with data

• graph structure is static, data is mutable

• update function for a vertex  
f(v, Sv) -> (Sv, T)

• Sv is the scope of vertex v:  
the data stored in v and all adjacent vertexes + edges

• vertex function can update any data in scope

• T: output a new list of vertices that need to be rerun

Synchrony
• GraphLab model allows asynchronous computation

• synchronous = all parameters are updated simultaneously using values
from previous time step

• requires a barrier before next round; straggler problem

• iterated MapReduce works like this

• asynchronous = continuously update parameters, always using most
recent input values

• adapts to differences in execution speed

• supports dynamic computation:  
in PageRank, some nodes converge quickly; stop rerunning them!

Graph processing correctness
• Is asynchronous processing OK?

• Depends on the algorithm

• some require total synchrony

• usually ok to compute asynchronously as long as there’s
consistency

• sometimes it’s even ok to run without locks at all

• Serializability: same results as though we picked a sequential
order of vertexes and each ran their update function in
sequence

GraphLab implementation

• 3 versions

• single machine, multicore shared memory

• Distributed GraphLab (this paper)

• PowerGraph (distributed, optimized for power-
law graphs)

Single-machine GraphLab
• Maintain queue of vertices to be updated,  

run update functions on these in parallel

• Ensuring serializability involves locking the  
scope of a vertex update function

• Weaker versions for optimizations: reduced scope

Making GraphLab distributed
• Partition the graph across machines w/ edge cut

• partition boundary is set of edges => 
each vertex is on exactly one machine

• except we need “ghost vertices” to compute:  
cached copies of vertices stored on neighbors

• Consistency problem:  
keep the ghost vertices up to date

• Partitioning controls load balancing

• want same number of vertices per partition (=> computation)

• want same number of ghosts (=> network load for cache updates)

Locking in GraphLab
• Same general idea as single-machine but now distributed!

• Enforcing consistency model requires acquiring locks on vertex
scope

• If need to acquire lock on edge or vertex on boundary, need to
do it on all partitions (ghosts) involved

• What about deadlock?

• usual DB answer is to detect deadlocks and roll back

• GraphLab uses a canonical ordering of lock acquisition
instead

Fault-tolerance

• MapReduce answer isn’t good enough:  
workers have state so we can’t just reassign their
task

• Take periodic, globally consistent snapshots

• Chandy-Lamport snapshot algorithm!

Challenge: power-law graphs
• Many graphs are not uniform!

• Power-law: a few popular vertices with many edges,  
many unpopular vertices with a few edges

• Problem for GraphLab: edge cuts are hugely imbalanced

PowerGraph: later version
• First improvement:  

partition by cutting vertices instead of edges

• each edge is in one partition, vertices can be in multiple

• high-degree vertices are split over many partitions

• Second: parallelize update function (new API)

• each server computes its “local” change to a split vertex, 
e.g., PageRank computation from other pages on that server 
then accumulate and apply the partial updates

• Third: better algorithm for fair partitioning

Spark

• Framework for large-scale distributed computation

• Designed for to support interactive applications  
not just batch processing

• Relatively recent (2012) but used widely:  
IBM, Yahoo, Baidu, Groupon, …  
Apache project, 1000+ contributors

Spark motivation
• Want a general framework for distributed computations

• MapReduce isn’t enough

• too inflexible, can’t handle iteration, etc

• can’t do interactive queries, only batch processing

• Argument: MR can’t handle complex interactive
queries because the only way to share data across
jobs is to store it in stable storage

Spark challenge
• Store intermediate data in a way that’s both fault-

tolerant and efficient

• want it to be in-memory because that’s 10-100x
faster than writing to disk / network FS

• enable reusing intermediate results between
different computations

• but in-memory data can be lost on failure!

Abstraction: RDDs
• immutable collection of records, partitioned

• only two ways to create a RDD

• access dataset on stable storage

• transformation of existing RDD (map, join, etc)

• Creation is lazy, just specifies a plan for computing

• Actions, e.g., storing result, cause RDD to be
materialized

Example: PageRank

PageRank RDDs

RDDs
• RDDs are represented as

• list of parent RDDs

• function to compute result from them

• partitioning scheme

• computation placement hint

• list of partitions for the RDD

Failure recovery in Spark
• Spark only makes one in-memory copy of a newly computed RDD

partition! (by default)

• if it fails, data is gone!

• Scheduler detects machine failure and schedules recomputation

• will need to recursively compute all partitions it depends on, until one
of them is found

• Checkpointing is optional

• user can ask Spark scheduler to make some RDD persistent

• expensive, but means that failure won’t have to recompute everything

