Data Analytics

Dan Ports, CSEP 552

logay

* MapReduce
* |S it a major step backwards?
* beyond MapReduce: Dryad
* Other data analytics systems:
 Machine learning: GraphlLab

* Faster queries: Spark

MapReduce Vodel

input is stored as a set of key-value pairs (k,v)

programmer writes map function
map(k,v) -> list of (k2, v2) pairs
gets run on every input element

hidden shuftle phase:
group all (k2, v2) pairs with the same key

programmer writes reduce function
reduce(k?2, set of values) -> output pairs (k3,v3)

MapReduce implementation

User
Program
(l)for#..- “)fo:rk ._(l.)-fork
(2 assjgn
.assign reduce .
an
\worker
split 0 i

o) (6) wnite output
sphit (5) remote read Worker file 0

split 2 % (4) local write
worker

split 3

split 4

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

@ output
file 1

MapReduce article

 Mike Stonebraker (Berkeley -> MIT)
* built one of first relational DBs (Ingres) &
many subsequent systems:
Postgres, Mariposa, Aurora, C-Store, H-Store, ..
e many startups: lllustra, Streambase, Vertica, VoltDB
e 2014 Turing award
e David DeWitt (Wisconsin -> Microsoft)

e parallel databases, database performance

DISCUSSION

* |s MapReduce a major step backwards?
* Are database researchers incredibly bitter?

* Are systems researchers ignorant of 50 years of
database work?

Systems vs Databases

* two generally separate streams of research
e distributed systems are relevant to both

 much distributed systems research follows
from OS community, including MapReduce

* (I have worked on both)

1he database tradition

Top-down design

Most important: define the right semantics first

¢ e.g., relational model and abstract language (SQL)
e e.g., concurrency properties (serializability)

...then tigure out how to implement them

e usually in a general purpose system

* making them fast comes later

Provide general interfaces for users

The OS tradition

Bottom-up design

Most important: engineering elegance

e simple, narrow interfaces

e clean, efficient implementations

e performance and scalability first-class concerns
Figuring out the semantics is secondary

Provide tools for programmers to build systems

* Where does MapReduce fit into this?

* Does this help explain the critiqgue”

MapReduce Critiques

Not as good as a database interface

e NO schema; uses imperative language instead of
declarative

Poor implementation: no indexes, can't scale
Not novel
Missing DB features & incompatible with existing DB tools

e |oading, indexing, transactions, constraints, etc

* |s MapReduce even a database?
* |s this an apples-to-oranges comparison”

* Should Google have built a scalable database
instead of MR?

MapReduce vs DBs

 Maybe not that far oft”?

* Languages atop MapReduce for simplitied
(either declarative or imperative) queries:

e Sawzall (Google); Pig (Yahoo), Hive (Facebook)

e Often involve adding schema to data

(My) lessons from MapReduce

e Specializing the system to focus on a particular
type of processing makes the problem tractable

* Map/reduce functional model supports writing
easler parallel code
(though so does the relational DB model!)

* [Fault-tolerance is easy when computations are
idempotent and stateless: just reexecute!

Non-lesson

The map and reduce phases are not fundamental

Don’t need to follow the pattern
input -> map -> shuftle -> reduce -> output

Some computations can't be expressed in this
model

but could generalize MapReduce to handle them

Example

1. score webpages by words they contain

2. score webpages by # of incoming links

3. combine the two scores

4. sort by combined score

would require multiple MR runs, probably 1 per step

step 3 has 2 inputs; MR supports only one

MR requires writing output & intermed results to disk

Dryao

« MSR system that generalizes

MapReduce
O O O O
* Observation: MapReduce
computation can be
: . ;~ %
visualized as a DAG f ;;‘:;‘o'(c ,"/%

AABRRL
e vertexes are inputs, outputs, /)!{}\ ‘\\'\
or computation workers OXOXORORO (M)

 edges are communication || |
channels

Dryao

Arbitrary programmer- e ,
specified graphs Job = Directed Acyclic Graph

@ 20 @ o

inputs, outputs = o SRR
: Processin

set of typed items Soey -

vertlces\ [® ("™~ Channels

{3 A (file, pipe,
edges are channels —<%~_/ | shared
(TCP, pipe, temp file) R W W
intermediate processing oo o ___.0
nputs

vertexes can have several
INnputs and outputs

Dryad implementation

* Similar to MapReduce

e vertices are stateless, deterministic computations

* NO cycles means that after a failure, can just
rerun a vertex's computation

e |fits inputs are lots, rerun upstream vertices
(transitively)

Programming Dryao

* Don't want programmers to directly write graphs

* also built DryadLINQ, an API that integrates with
programming languages (e.qg., C#)

DryadLINQ example

 Word frequency: count occurrences of each word,
return top 3

public static IQueryable<Pair> Histogram(input, k)({
var words = input.SelectMany(x => x.Split(' '));
var groups = words.GroupBy(x => X);

var counts
var ordered =

groups.Select(x => new Pair(x.Key, x.Count()));

counts.OrderByDescending(x => x.Count);

var top = ordered.Take(k);

return top;

GroupBy

OrderByDescending
LELGE))

“A line of words of wisdom”

“A”, “line”, “of”, “words”, “of”, “wisdom”]

[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
{“of”, 2}, {“A”, 1}, {“line”, 1}]

DryadLINQ example

SelectMany
Sort waen-pantoned i) wroen-pattoned 1] woen-patdoned 5 i patsaned yaenpamtared a8 wéenputioned v
GroupBy+Select \ \. o ' 4 /
HashDistribute ' Spe_tH) &w_': Spe_tl Swe 1 s» " Swe B S
MergeSort ’ T T :
GroupBy By
'
Select S\
Sort | |
Take Bl 5513014603800 ke o4
MergeSort
Take

Machine Learning:
GraphLab

ML and data mining are hugely popular areas now!
* clustering, modeling, classification, prediction
Need to run these algorithms on huge data sets

Means that we need to run them on distributed
systems

Need new distributed systems abstractions

Example: PageRank

e Assign a score to each webpage

 Update the score:

PageRank of inbound link

PageRank ite =
P:ngnkg:nmaOf s Number of links on that page

 Repeat until converged

What's the right abstraction”

 Message-passing & threads? (MPI/pthreads)

» |eaves all the hard work to the programmer!
fault tolerance, load balancing, locking, races

« MapReduce?

 fails when there are computational dependencies in data (Dryad
can help)

e fails when there is an iterative structure
e rerun until it converges”? programmer has to deal with this!

 GraphlLab: computational model for graphs

Why graphs?

most ML/DM applications are amenable to graph
structuring

ML/DM is often about dependencies between data
* represent each data item as a vertex

* represent each dependency between two pieces
of data as an edge

Graph representation

e graph = vertices + edges, each with data
e graph structure Is static, data is mutable

e update function for a vertex
fv, Sy) -> (Sy, T)

e SyIs the scope of vertex v:
the data stored in v and all adjacent vertexes + edges

e vertex function can update any data in scope

e [: output a new list of vertices that need to be rerun

Synchrony

e GraphlLab model allows asynchronous computation

e synchronous = all parameters are updated simultaneously using values
from previous time step

* requires a barrier before next round; straggler problem
 terated MapReduce works like this

e asynchronous = continuously update parameters, always using most
recent input values

e adapts to differences in execution speed

e supports dynamic computation:
In PageRank, some nodes converge quickly; stop rerunning them!

Graph processing correctness

|s asynchronous processing OK?
 Depends on the algorithm
e some require total synchrony

e usually ok to compute asynchronously as long as there’s
consistency

e sometimes It's even ok to run without locks at all

» Serializability: same results as though we picked a sequential
order of vertexes and each ran their update function in
seguence

GraphlLab implementation

* 3 versions
* single machine, multicore shared memory
* Distributed GraphlLab (this paper)

 PowerGraph (distributed, optimized for power-
law graphs)

Single-machine GraphlLab

 Maintain queue of vertices to be updated,
run update functions on these in parallel

* Ensuring serializability involves locking the
scope of a vertex update function

 Weaker versions for optimizations: reduced scope

Full Consistency

¢oge Conscstency
e (\el CODSfS(e

St O el

Making GraphlLab distributed

Partition the graph across machines w/ edge cut

e partition boundary is set of edges =>
each vertex is on exactly one machine

e except we need "ghost vertices” to compute:
cached copies of vertices stored on neighbors

e Consistency problem:
keep the ghost vertices up to date

« Partitioning controls load balancing
e want same number of vertices per partition (=> computation)

e want same number of ghosts (=> network load for cache updates)

_ocking in GraphlLalb

Same general idea as single-machine but now distributed!

Enforcing consistency model requires acquiring locks on vertex
SCOope

It need to acquire lock on edge or vertex on boundary, need to
do it on all partitions (ghosts) involved

What about deadlock?
e ysual DB answer Is to detect deadlocks and roll back

« GraphlLab uses a canonical ordering of lock acquisition
iInstead

Fault-tolerance

* MapReduce answer isn't good enough:

workers have state so we can't just reassign their
task

* Jake periodic, globally consistent snapshots

 Chandy-Lamport snapshot algorithm!

Challenge: power-law graphs

 Many graphs are not uniform!

 Power-law: a few popular vertices with many edges,
many unpopular vertices with a few edges

B

> 4

S 10 =2
2

10' 10 10° 10" 10 10"
Out Degree

(a) Twitter In-Degree (b) Twitter Out-Degree

* Problem for GraphlLab: edge cuts are hugely imbalanced

PowerGraph: later version

First improvement:
partition by cutting vertices instead of edges

e each edge is in one partition, vertices can be in multiple
e high-degree vertices are split over many partitions
 Second: parallelize update function (new API)
e ecach server computes its “local” change to a split vertex,
e.g., PageRank computation from other pages on that server

then accumulate and apply the partial updates

* Third: better algorithm for fair partitioning

Spark

* Framework for large-scale distributed computation

* Designed for to support interactive applications
not just batch processing

* Relatively recent (2012) but used widely:
IBM, Yahoo, Baidu, Groupon, ...
Apache project, 1000+ contributors

Spark motivation

* \Want a general framework for distributed computations

* MapReduce isn't enough
e too Inflexible, can’t handle iteration, etc

 can't do interactive queries, only batch processing

 Argument: MR can't handle complex interactive

gueries because the only way to share data across
jobs Is to store it In stable storage

Spark challenge

e Store intermediate data in a way that’s both fault-
tolerant and efficient

 want it to be in-memory because that's 10-100x
faster than writing to disk / network FS

* enable reusing intermediate results between
different computations

* pbut in-memory data can be |lost on failure!

Abstraction: RDDs

 Immutable collection of records, partitioned
e only two ways to create a RDD
e access dataset on stable storage
e transformation of existing RDD (map, join, etc)
* Creation is lazy, just specifies a plan for computing

* Actions, e.qg., storing result, cause RDD to be
materialized

Example: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

ziEneighbors ranl(i / |ﬂ€ighb0l’5i\
1inks = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (1 <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmMap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.si1ze))
}.reduceBykKey(_ + _)

}

PageRank RDDsS

Links L Ranks, J

\(url, neighbors) (url, rank)
nl join
L Contribs, }
Tinks = // RDD of (url, neighbors) pairs |
ranks = // RDD of (url, rank) pairs l reduce
for (i <- 1 to ITERATIONS) { [Ranks J
ranks = Tinks.join(ranks).flatmap { -
(url, (links, rank)) => St
Tinks.map(dest => (dest, rank/links.size)) 11 JOIn
.red .
, }.reduceBykKey(_ + _) [Contrlbsz }
l reduce
[Ranks, J

W

RDDsS

* RDDs are represented as
- list of parent RDDs
- function to compute result from them
e partitioning scheme
* computation placement hint

* |ist of partitions for the RDD

Failure recovery in Spark

e Spark only makes one in-memory copy of a newly computed RDD
partition! (by default)

 if it fails, data is gone!
* Scheduler detects machine failure and schedules recomputation

* will need to recursively compute all partitions it depends on, until one
of them is found

e Checkpointing is optional
e user can ask Spark scheduler to make some RDD persistent

e expensive, but means that failure won't have to recompute everything

