Introduction to
Distributed Systems




Today’s Lecture

® Introduction

® Course details




Distributed Systems are
everywhere!

® Some of the most powerful services are powered
using distributed systems

® systems that span the world,




What is a distributed
system?

® multiple interconnected computers that cooperate to




Why distributed systems?

® Higher capacity and performance







(Partial) List of Challenges

® Fault tolerance

® different failure models, different types of failures

® Consistency/correctness of distributed state

® System design and architecture




® We want to build distributed systems to be more
scalable, and more reliable




Challenge: failure




Consider a datacenter

® E.g., Facebook, Prineville OR

® 10x size of this building, S1B cost, 30 MW power

® 200K+ servers

® 500K+ disks




Typical first year for a cluster

[Jeff Dean, Google, 2008]

® ~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
® ~1PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
® ~1rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
® ~1 network rewiring (rolling ~5% of machines down over 2-day span)

®  ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

® ~5racks go wonky (40-80 machines see 50% packetloss)

® ~8 network maintenances (4 might cause ~30-minute random connectivity losses)




® At any given point in time, there are many failed
components!




Challenge: Managing State




State Management

® Keep data available despite failures:

® make multiple copies in different places

® Make popular data fast for everyone:

® make multiple copies in different places

® Store a huge amount of data:




Lot of subtleties

® Simple idea: make two copies of data so you can
tolerate one failure

® We will spend a non-trivial amount of time this
uarter learning how to do this correctly!




The Two Generals Problem

® Two armies are encamped on two hills surrounding a
AWALERCHEY

® The generals must agree on the same time to attack
the city.

® Their only way to communicate is by sending a
messenger through the valley, but that messenger
could be captured (and the message lost)



The Two-Generals Problem

® No solution is possible!

® If a solution were possible:

® it must have involved sending some messages

® but the last message could have been lost, so we must not







Distributed Systems are Hard

® Distributed systems are hard because many things we
want to do are provably impossible

® consensus: get a group of nodes to agree on a value (say,
which request to execute next)

® be certain about which machines are alive and which ones
are just slow




This Course

® Introduction to the major challenges in building
distributed systems

® Will cover key ideas, algorithms, and abstractions in

e




Topics

® |Implementing distributed systems: system and protocol
design

® Understanding the global state of a distributed system

® Building reliable systems from unreliable components

Building scalable systems




Course Components

® Readings and discussions of research papers (20%)

® no textbook

® online response to discussion questions — one or two paras

® we will pick the best 7 out of 8 scores




Course Staff

® Instructor: Arvind

o TAs:_




Canvas

® Link on class webpage

® Post responses to weekly readings




Remote Procedure Call

® How should we communicate between nodes in a
distributed system?

® Could communicate with explicit message patterns




Common Pattern: Client/server

® Client requires an operation to be performed on a
server and desires the result

® RPC fits this design pattern:




Local Execution

float balance(int accountID) {
return balance[accountID];

}

vold deposit(int accountID, float amount) {
balance[accountID] += amount
return OK;

}

client() {
deposit(42, $50.00); standard

-

print balance(42); ™ function calls




Hard-coded Distributed Protocol

regquest "balance" = 1 {
arguments {
int accountID (4 bytes)
}
response {
float balance (8 bytes);

}
}

request "deposit" = 2 {
arguments {
int accountID (4 bytes)
float amount (8 bytes)
}

response {

}




Hard-coding Client/Server

client() {
g = sackez(UDP)

mes = (2, 42, 50.00}

send(s, server address, Isg)
response - receive(s)

check resporsa == "0OX"

// marchalling

meg (1, 42;

send(s -> server address, mIg)
resnanse = receive(s)

prirt "balarce is" + response

)

aerver( ) {
g = packet(UDP)
bird s Lo port 1024
while (1) ¢
mag, client_addr = receive(s)
typae = byte 0 of msag
1f (Type == 1) {
account bytes 1-4 cf msg // unmarshalling
result = balance(acccunt)
send(s -> client_addr, result)
} else if (type = 2) {
account = bytes 1-4 cof msg
amount = bytes 5-12 cf msg
deposzit(account, amount)
send(s -> client addr, "OK")

Question:

Why is this a bad
approach to
developing systems?




RPC Approach

® Compile high level protocol specs into stubs that do
marshalling/unmarshalling




RPC Approach

Callee machine
RPCRuntime
transmit

N

wait

\l/ Result packet
receive transmit

importer exporter importer exporter
interface interface




RPC hides complexity

float balance(int accountID) {
return balance[accountID];

}

void deposit(int accountID, float amount) {
balance[accountID] += amount
return OK;

}

client() {

RPC deposit(server, 42, $50.00); standard
print RPC_balance(server, 42); < function calls







Dealing with Failures

® Client failures

® Server failures

® Communication failures




At-least-once RPC

® Client retries request until it gets a response

® Implications:




Alternative: at-most-once

® Include a unique ID in every request

® Server keeps a history of requests it has already
answered, their IDs, and the results

If duplicate, server resends result




First Assignment

® Implement RPCs for a key-value store

- @ Simple assignment — goal is to get you familiz




Primary-Backup Replication

® Widely used

® Reasonably simple to implement




Fault Tolerance

® we'd like a service that continues despite failures!
® available: still useable despite some class of failures

® strong consistency: act just like a single server to




Core Idea: replication

® Two servers (or more)




Key Questions

® What state to replicate?

® How does replica get state?




Two Main Approaches

® State transfer

® "Primary" replica executes the service

® Primary sends [new] state to backups

® Replicated state machine




VMware’s FT Virtual Machines

® \Whole-system replication

® Completely transparent to applications and clients

® High availability for any existing software




Overview

® two machines, primary and backup
® shared-disk for persistent storage

® back-up in "lock step" with primary

® primary sends all inputs to backup

® outputs of backup are dropped

® heart beats between primary and backup

® if primary fails, start backup executing!

(o
Logging
channe!

[=———=3

Shared D'sk/




Challenges

® Making it look like a single reliable server

® How to avoid two primaries? (“split-brain syndrome")




Technique 1: Deterministic Replay

® Goal: make x86 platform deterministic

® idea: use hypervisor to make virtual x86 platform
deterministic

® Log all hardware events into a log

® clock interrupts, network interrupts, i/o interrupts, etc.




Deterministic Replay

® Replay: deliver inputs in the same order, at the same instructions
® if during recording delivered clock interrupt at nth instr.

® during replay also deliver the interrupt at the nth instr.

® Given an event log, deterministic replay recreates VM

~ ® hypervisor delivers first event




Applying Deterministic Replay to VM-FT

® Hypervisor at primary records

® Sends log entries to backup over logging channel

® Hypervisor at backup replays log entries




Example

® Primary receives network interrupt

hypervisor forwards interrupt plus data to backup
hypervisor delivers network interrupt to OS kernel

OS kernel runs, kernel delivers packet to server

server/kernel write response to network card




Technique 2: FT Protocol

® Primary delays any output until the backup acks

® Log entry for each output operation

® Primary sends output after backup acked receiving output
operation




Questions

® Why send output events to backup and delay output
until backup has acked?

® What happens when primary fails after receiving




Design Space

® Active or passive replicas




Lab Framework

® Designed with the following requirements in mind:
® single machine, centralized orchestration
® simulate arbitrary network behavior

® allow for model checking, visualization

First lab: A R— T




