
Introduc)on	to	
Distributed	Systems

Arvind	Krishnamurthy

Today’s	Lecture

• Introduc)on	

• Course	details	

• RPCs	

• Primary-backup	systems	(start	discussion)

Distributed	Systems	are	
everywhere!

• Some	of	the	most	powerful	services	are	powered	
using	distributed	systems	

• systems	that	span	the	world,	

• serve	millions	of	users,	

• and	are	always	up!	

• …	but	also	pose	some	of	the	hardest	CS	problems	

• Incredibly	relevant	today

What	is	a	distributed	
system?

• mul)ple	interconnected	computers	that	cooperate	to	
provide	some	service	

• what	are	some	examples	of	distributed	systems?

Why	distributed	systems?

• Higher	capacity	and	performance	

• Geographical	distribu)on	

• Build	reliable,	always-on	systems

• What	are	the	challenges	in	building	distributed	
systems?

(Par)al)	List	of	Challenges

• Fault	tolerance	

• different	failure	models,	different	types	of	failures	

• Consistency/correctness	of	distributed	state	

• System	design	and	architecture	

• Performance	

• Scaling	

• Security	

• Tes)ng

• We	want	to	build	distributed	systems	to	be	more	
scalable,	and	more	reliable	

• But	it’s	easy	to	make	a	distributed	system	that’s	less	
scalable	and	less	reliable	than	a	centralized	one!

Challenge:	failure

• Want	to	keep	the	system	doing	useful	work	in	the	
presence	of	par)al	failures

Consider	a	datacenter

• E.g.,	Facebook,	Prineville	OR	

• 10x	size	of	this	building,	$1B	cost,	30	MW	power	

• 200K+	servers	

• 500K+	disks	

• 10K	network	switches	

• 300K+	network	cables	

• What	is	the	likelihood	that	all	of	them	are	func)oning	
correctly	at	any	given	moment?

Typical	first	year	for	a	cluster

• ~0.5	overhea)ng	(power	down	most	machines	in	<5	mins,	~1-2	days	to	recover)	

• ~1	PDU	failure	(~500-1000	machines	suddenly	disappear,	~6	hours	to	come	back)	

• ~1	rack-move	(plenty	of	warning,	~500-1000	machines	powered	down,	~6	hours)	

• ~1	network	rewiring	(rolling	~5%	of	machines	down	over	2-day	span)	

• ~20	rack	failures	(40-80	machines	instantly	disappear,	1-6	hours	to	get	back)	

• ~5	racks	go	wonky	(40-80	machines	see	50%	packetloss)	

• ~8	network	maintenances	(4	might	cause	~30-minute	random	connec)vity	losses)	

• ~12	router	reloads	(takes	out	DNS	and	external	vips	for	a	couple	minutes)	

• ~3	router	failures	(have	to	immediately	pull	traffic	for	an	hour)	

• ~dozens	of	minor	30-second	blips	for	dns	

• ~1000	individual	machine	failures	

• ~thousands	of	hard	drive	failures	

• slow	disks,	bad	memory,	misconfigured	machines,	flaky	machines,	etc

[Jeff Dean, Google, 2008]

• At	any	given	point	in)me,	there	are	many	failed	
components!	

• Leslie	Lamport	(c.	1990):	“A	distributed	system	is	one	
where	the	failure	of	a	computer	you	didn’t	know	
existed	renders	your	own	computer	useless”

Challenge:	Managing	State

• Ques)on:	what	are	the	issues	in	managing	state?

State	Management

• Keep	data	available	despite	failures:		

• make	mul)ple	copies	in	different	places	

• Make	popular	data	fast	for	everyone:	

• make	mul)ple	copies	in	different	places	

• Store	a	huge	amount	of	data:	

• split	it	into	mul)ple	par))ons	on	different	machines	

• How	do	we	make	sure	that	all	these	copies	of	data	are	
consistent	with	each	other?	

• How	do	we	do	all	of	this	efficiently?

Lot	of	subtle)es

• Simple	idea:	make	two	copies	of	data	so	you	can	
tolerate	one	failure	

• We	will	spend	a	non-trivial	amount	of)me	this	
quarter	learning	how	to	do	this	correctly!	

• What	if	one	replica	fails?	

• What	if	one	replica	just	thinks	the	other	has	failed?	

• What	if	each	replica	thinks	the	other	has	failed?

The	Two	Generals	Problem

• Two	armies	are	encamped	on	two	hills	surrounding	a	
city	in	a	valley	

• The	generals	must	agree	on	the	same)me	to	arack	
the	city.	

• Their	only	way	to	communicate	is	by	sending	a	
messenger	through	the	valley,	but	that	messenger	
could	be	captured	(and	the	message	lost)

The	Two-Generals	Problem

• No	solu)on	is	possible!	

• If	a	solu)on	were	possible:	

• it	must	have	involved	sending	some	messages	

• but	the	last	message	could	have	been	lost,	so	we	must	not	
have	really	needed	it	

• so	we	can	remove	that	message	en)rely	

• We	can	apply	this	logic	to	any	protocol,	and	remove	
all	the	messages	—	contradic)on

• What	does	this	have	to	do	with	distributed	systems?

Distributed	Systems	are	Hard

• Distributed	systems	are	hard	because	many	things	we	
want	to	do	are	provably	impossible	

• consensus:	get	a	group	of	nodes	to	agree	on	a	value	(say,	
which	request	to	execute	next)	

• be	certain	about	which	machines	are	alive	and	which	ones	
are	just	slow	

• build	a	storage	system	that	is	always	consistent	and	always	
available	(the	“CAP	theorem”)	

• We	need	to	make	the	right	assump)ons	and	also	
resort	to	“best	effort”	guarantees

This	Course

• Introduc)on	to	the	major	challenges	in	building	
distributed	systems	

• Will	cover	key	ideas,	algorithms,	and	abstrac)ons	in	
building	distributed	system	

• Will	also	cover	some	well-known	systems	that	
embody	such	as	ideas

Topics

• Implemen)ng	distributed	systems:	system	and	protocol	
design	

• Understanding	the	global	state	of	a	distributed	system	

• Building	reliable	systems	from	unreliable	components	

• Building	scalable	systems	

• Managing	concurrent	accesses	to	data	with	transac)ons	

• Abstrac)ons	for	big	data	analy)cs	

• Building	secure	systems	from	untrusted	components	

• Latest	research	in	distributed	systems

Course	Components

• Readings	and	discussions	of	research	papers	(20%)	

• no	textbook	

• online	response	to	discussion	ques)ons	—	one	or	two	paras	

• we	will	pick	the	best	7	out	of	8	scores	

• Programming	assignments	(80%)	

• building	a	scalable,	consistent	key-value	store	

• three	parts	(if	done	as	individuals)	or	four	parts	(if	done	as	
groups	of	two)	

• total	of	5	slack	days	with	no	penalty

Course	Staff

• Instructor:	Arvind	

• TAs:	

• Kaiyuan	Zhang	

• Paul	Yau	

• Contact	informa)on	on	the	class	page

Canvas

• Link	on	class	webpage	

• Post	responses	to	weekly	readings	

• Please	use	Canvas	“discussions”	to	discuss/clarify	the	
assignment	details	

• Upload	assignment	submissions

Remote	Procedure	Call

• How	should	we	communicate	between	nodes	in	a	
distributed	system?	

• Could	communicate	with	explicit	message	parerns	

• But	that	could	be	too	low-level	

• RPC	is	a	communica)on	abstrac)on	to	make	
programming	distributed	systems	easier

Common	Parern:	Client/server

• Client	requires	an	opera)on	to	be	performed	on	a	
server	and	desires	the	result	

• RPC	fits	this	design	parern:	

• hides	most	details	of	client/server	communica)on	

• client	call	is	much	like	ordinary	procedure	call	

• server	handlers	are	much	like	ordinary	procedures

Local	Execu)on

Hard-coded	Distributed	Protocol

Hard-coding	Client/Server

Question:
Why is this a bad
approach to
developing systems?

RPC	Approach

• Compile	high	level	protocol	specs	into	stubs	that	do	
marshalling/unmarshalling	

• Make	a	remote	call	look	like	a	normal	func)on	call

RPC	Approach

RPC	hides	complexity

• Ques)on:	is	the	complexity	all	gone?	

• what	are	the	issues	that	we	s)ll	would	have	to	deal	with?

Dealing	with	Failures

• Client	failures	

• Server	failures	

• Communica)on	failures	

• Client	might	not	know	when	failure	happened	

• E.g.,	client	never	sees	a	response	from	the	server	—	server	
could	have	failed	before	or	awer	handling	the	message

At-least-once	RPC

• Client	retries	request	un)l	it	gets	a	response	

• Implica)ons:	

• requests	might	be	executed	twice	

• might	be	okay	if	requests	are	idempotent

Alterna)ve:	at-most-once

• Include	a	unique	ID	in	every	request	

• Server	keeps	a	history	of	requests	it	has	already	
answered,	their	IDs,	and	the	results	

• If	duplicate,	server	resends	result	

• Ques)on:	how	do	you	guarantee	uniqueness	of	IDs?	

• Ques)on:	how	can	we	garbage	collect	the	history?

First	Assignment

• Implement	RPCs	for	a	key-value	store	

• Simple	assignment	—	goal	is	to	get	you	familiar	with	
the	framework	

• Due	on	1/16	at	5pm

Primary-Backup	Replica)on

• Widely	used	

• Reasonably	simple	to	implement	

• Hard	to	get	desired	consistency	and	performance		

• Will	revisit	this	and	consider	other	approaches	later	in	
the	class

Fault	Tolerance

• we'd	like	a	service	that	con)nues	despite	failures!	

• available:	s)ll	useable	despite	some	class	of	failures	

• strong	consistency:	act	just	like	a	single	server	to	
clients	

• very	useful!	

• very	hard!

Core	Idea:	replica)on

• Two	servers	(or	more)	

• Each	replica	keeps	state	needed	for	the	service	

• If	one	replica	fails,	others	can	con)nue

Key	Ques)ons

• What	state	to	replicate?	

• How	does	replica	get	state?	

• When	to	cut	over	to	backup?	

• Are	anomalies	visible	at	cut-over?	

• How	to	repair/re-integrate?

Two	Main	Approaches

• State	transfer	

• "Primary"	replica	executes	the	service	

• Primary	sends	[new]	state	to	backups	

• Replicated	state	machine	

• All	replicas	execute	all	opera)ons	

• If	same	start	state,	same	opera)ons,	same	order,	
determinis)c	→ then	same	end	state	

• There	are	tradeoffs:	complexity,	costs,	consistency

VMware’s	FT	Virtual	Machines

• Whole-system	replica)on	

• Completely	transparent	to	applica)ons	and	clients	

• High	availability	for	any	exis)ng	sowware	

• Failure	model:	

• independent	hardware	faults	

• site-wide	power	failure	

• Limited	to	uniprocessor	VMs

Overview

• two	machines,	primary	and	backup	

• shared-disk	for	persistent	storage	

• back-up	in	"lock	step"	with	primary	

• primary	sends	all	inputs	to	backup	

• outputs	of	backup	are	dropped	

• heart	beats	between	primary	and	backup	

• if	primary	fails,	start	backup	execu)ng!

Challenges

• Making	it	look		like	a	single	reliable	server	

• How	to	avoid	two	primaries?		(“split-brain	syndrome")	

• How	to	make	backup	an	exact	replica	of	primary	

• What	inputs	must	send	to	backup?	

• How	to	deal	with	non-determinism?

Technique	1:	Determinis)c	Replay

• Goal:	make	x86	pla}orm	determinis)c	

• idea:	use	hypervisor	to	make	virtual	x86	pla}orm	
determinis)c	

• Log	all	hardware	events	into	a	log	

• clock	interrupts,	network	interrupts,	i/o	interrupts,	etc.	

• for	non-determinis)c	instruc)ons,	record	addi)onal	info	

• e.g.,	log	the	value	of	the)me	stamp	register	

• on	replay:	return	the	value	from	the	log	instead	of	the	
actual	register

Determinis)c	Replay

• Replay:	deliver	inputs	in	the	same	order,	at	the	same	instruc)ons	

• if	during	recording	delivered	clock	interrupt	at	nth	instr.	

• during	replay	also	deliver	the	interrupt	at	the	nth	instr.	

• Given	an	event	log,	determinis)c	replay	recreates	VM	

• hypervisor	delivers	first	event	

• lets	the	machine	execute	to	the	next	event	

• using	special	hardware	registers	to	stop	the	processor	at	the	right	instruc)on	

• OS	runs	iden)cal,	applica)ons	runs	iden)cal	

• Limita)on:	cannot	handle	mul)core	processors	and	interleaving

Applying	Determinis)c	Replay	to	VM-FT

• Hypervisor	at	primary	records	

• Sends	log	entries	to	backup	over	logging	channel	

• Hypervisor	at	backup	replays	log	entries	

• We	need	to	stop	virtual	x86	at	instruc)on	of	next	event	

• We	need	to	know	what	is	the	next	event	

• backup	lags	behind	one	event

Example
• Primary	receives	network	interrupt	

• hypervisor	forwards	interrupt	plus	data	to	backup	

• hypervisor	delivers	network	interrupt	to	OS	kernel	

• OS	kernel	runs,	kernel	delivers	packet	to	server	

• server/kernel	write	response	to	network	card	

• hypervisor	gets	control	and	puts	response	on	the	wire	

• Backup	receives	log	entries	

• backup	delivers	network	interrupt	

• …	

• hypervisor	does	*not*	put	response	on	the	wire	

• hypervisor	ignores	local	clock	interrupts

Technique	2:	FT	Protocol

• Primary	delays	any	output	un)l	the	backup	acks	

• Log	entry	for	each	output	opera)on	

• Primary	sends	output	awer	backup	acked	receiving	output	
opera)on	

• Performance	op)miza)on:	

• primary	keeps	execu)ng	past	output	opera)ons	

• buffers	output	un)l	backup	acknowledges

Ques)ons

• Why	send	output	events	to	backup	and	delay	output	
un)l	backup	has	acked?	

• What	happens	when	primary	fails	awer	receiving	
network	input	but	before	sending	a	corresponding	log	
entry	to	backup?	

• Can	the	same	output	be	produced	twice?

Design	Space

• Ac)ve	or	passive	replicas	

• Symmetric	replicas	or	primary-backup	

• Replicate	commands	or	low-level	inputs

Lab	Framework

• Designed	with	the	following	requirements	in	mind:	

• single	machine,	centralized	orchestra)on	

• simulate	arbitrary	network	behavior	

• allow	for	model	checking,	visualiza)on	

• First	lab:	

• introduce	the	framework,	understand	“client”	and	“)meout”	

• Second	and	subsequent	labs:	

• all	interac)ons	through	messages	

• you	have	complete	control	over	everything

