Clocks and Ordering
in Distributed Systems

Distributed Make

® Distributed file servers holds source and object files

® Clients specify modification time on uploaded files

® Use timestamps to decide what needs to be rebuilt

Another Example: Facebook

® Remove boss as friend

® Post: “My boss is the worst, | need a new job!”

® Friendship links, posts, privacy settings stored across a
large number of distributed servers

Two Approaches

® Design a scheme that synchronizes physical clocks

Simplest Approach

® Designhate one server as the master

® Master periodically broadcasts time

Variations in Network Latency

® Latency can be unpredictable and has a lower bound

® Tweak: Clients receive broadcast, set their clock to the
value in the message + minimum delay

Interrogation Based Approach

® Client sends a roundtrip message to query server’s time

® Set’s client’s clock to server’s clock + half of RTT

master

® \Worst case error (if we know the min latency): (T2-T0)/2 - min

Practical Realization

® NTP uses an interrogation-based approach, plus:

® taking multiple samples to eliminate ones not close to min
RTT

® averaging among multiple masters

Are physical clocks enough?

Virginia

Oregon

Califmia

Ireland

Singap

Tokyo

Sydney

SaoPao

Virginia

-0.01

-69.04

-163.98

-237.53

-242.77

-199.78

-189.03

Oregon

61.24

-0.05

-99.48

-170.07

-185.16

-143.30

-110.12

-38.02

Califrnia

159.96

94.57

-0.03

-83.01

-68.67

-21.08

-4.90

105.99

Ireland

225.18

166.07

73.63

-0.03

36.22

49.08

67.43

178.24

Singap

Tokyo

223.93

171.53

167.24

110.57

79.00

18.84

4.00

-51.92

-0.02

-55.83

49.65

0.00

88.28

37.73

176.49

77.31

Sydney

135.25

77.66

-15.36

-70.23

-86.15

-38.38

0.03

166.03

SaoPao

64 .42

17.53

-94.05

-163.43

-164.71

-65.92

-158.14

0.01

(measurements from Amazon EC?2)

Clock synchronization measurements

® Within a datacenter: ~20-50 microseconds

Logical Clocks

® another way to keep track of time

Events and Histories

® Processes execute sequences of events

® Events can be of 3 types: local, send, and receive

® The local history of a process is the sequence of
events executed by process

Ordering events

® Observation 1:
® Eventsin alocal history are totally ordered

D; O——O—O—O——O— O O———O—O—0 >

® Observation 2:

Lamport Clock: Increment Rules

Discussion

-® What are the strengths amport clocks?

Example of Global Predicate

® Setting: Locks in distributed system

® Objects locked by nodes and moved to the node that is
currently modifying it

Another example

® Suppose we're running a large ML computation, e.g.
PageRank

® thousands of servers

® cach holds some subset of web pages

® cach page starts out with some reputation

Global States & Clocks

® Need to reason about global states of a distributed system

® Global state: processor state + communication channel
state

Space-Time diagrams
A graphic representation of a distributed execution

p]_ ; time

‘P1

Cuts

A cut Cis a subset of the global history of H

The frontier of C is the set of events

Consistent cuts and
consistent global states

® A cutis consistent if
Ve R aic R Gdsciianlcie S Rch()

® A consistent global state is one corresponding to a

What po sees
-) ;
- San

Global Consistent States

- @ Can we use Lamport Clocks as part of a mechanismto

Global Snapshot

® Develop a simple global snapshot protocol

® Refine protocol as we relax assumptions

® Record:

. processor states
- channel states

Snapshot |

i. Do selects tss
ii. posends "take a snapshot at iss' to all processes

iii. when clock of pireads tss then p
@ records its local state o;

@ sends an empty message along its outgoing channels

Snapshot Il

@ processor po selects ()

@ po sends “take a snapshot at Q” to all processes; it waits for
all of them tfo reply and then sets its logical clock to)

@ when clock of p; reads (2 then p;

1 records its local state o;
1 sends an empty message along its outgoing channels

Relaxing synchrony

empty message:
take a TS(m) >
snapshot at (2
Pi | =

Snapshot Il

@ processor po sends itself “take a snapshot "

@ when p; receives “take a snapshot” for the first time from p;:

I3 records its local state o;
11 sends “take a snapshot” along its outgoing channels
1 sets channel from p; to empty

[J starts recording messages received over each of its other incoming

Same problem, different approach

® Monitor process does not query explicitly

® Instead, it passively collects information and uses it to
build an observation.
(reactive architectures, Harel and Pnueli [1985])

Update rules

Pi . >

Example

[1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

Operational interpretation

[1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

A

[0,1,0] [4,3,3]

VC properties:
event ordering

Given two vectors V and V/ less than is defined as:
V<Vi=VAV)IANNE:1<k<n:V[k] <V'[k])

@ Strong Clock Condition: e — ¢ =V C(e) < VC(e')

@ Simple Strong Clock Condition:

The protocol

@ po maintains an array DJ1,...,n|of counters

@ D|i] = TS(m;)|i]| where m; is the last
message delivered from p;

Summary

® Lamport clocks and vector clocks provide us with
good tools to reason about timing of events in a
distributed system

