
Google	File	System



Google	File	System

• Different	workload	and	design	priori8es	

• GFS	is	designed	for	Google	apps	

• Google	apps	are	designed	for	GFS!

• Google	needed	a	good	distributed	file	system	

• Why	not	use	an	exis8ng	file	system?	



Workload	Considera8ons

• Op8mize	cost:	don’t	use	high-end	machines,	instead	tolerate	
failures	when	they	happen	

• Dedicated	computers	

• In	2000,	2500+	for	search;	15K+	by	2004,	and	250K+	by	2007	

• “Modest”	number	of	huge	files;	few	million	of	100MB	files	

• Files	are	write-once,	mostly	appended	to	(perhaps	
concurrently)	

• Large	streaming	reads;	high	throughput	favored	over	low	
latency



GFS	Design	Decisions

• Files	stored	as	chunks	(fixed	size:	64MB)	

• Reliability	through	replica8on	

• each	chunk	replicated	over	3+	chunkservers	

• Simple	master	to	coordinate	access,	keep	metadata	

• No	data	caching!		Why?	

• Familiar	interface,	but	customize	the	API	

• focus	on	Google	apps;	add	snapshot	and	record	append	
opera8ons



GFS	Architecture

• What	are	the	implica8ons	of	this	design?



Design	Points

• Shadow	masters	

• Minimize	master	involvement	

• Never	move	data	through	it	(only	metadata)	

• Cache	metadata	at	clients	

• Large	chunk	size	

• Master	delegates	authority	to	primary	replicas	in	data	
muta8ons



Metadata

• Global	metadata	is	stored	on	the	master	

• File	and	chunk	namespaces	

• Mapping	from	files	to	chunks	

• Loca8ons	of	each	chunk’s	replicas	

• All	in	memory	(64B/chunk)	

• Few	million	files	==>	can	fit	all	in	memory



Durability

• Master	has	an	opera8on	log	for	persistent	logging	of	
cri8cal	metadata	updates	

• each	log	write	is	2PC	to	mul8ple	remote	machines	

• replicated	transac8onal	redo	log	

• group	commit	to	reduce	the	overhead	

• checkpoint	all	(log)	state	periodically;	essen8ally	mmap	file	
to	avoid	parsing	

• checkpoint:	switch	to	new	log	and	copy	snapshot	in	
background



Read	Opera8ons



Read	Opera8ons



Mutable	Opera8ons

• Muta8on	is	write	or	append	

• Goal:	minimize	master	
involvement	

• Lease	mechanism	

• Master	picks	one	replica	
as	primary;	gives	it	a	
lease		

• Primary	defines	a	serial	
order	of	muta8ons	

• Data	flow	decoupled	from	
control	flow



Write	Opera8ons

• Applica8on	originates	write	request	

• GFS	client	translates	request	from	(fname,	data)	-->	
(fname,	chunk-index)	sends	it	to	master	

• Master	responds	with	chunk	handle	and	
(primary+secondary)	replica	loca8ons	

• Client	pushes	write	data	to	all	loca8ons;	data	is	stored	
in	chunkservers’	internal	buffers	

• Client	sends	write	command	to	primary



Write	Opera8ons	(contd.)

• Primary	determines	serial	order	for	data	instances	
stored	in	its	buffer	and	writes	the	instances	in	that	
order	to	the	chunk	

• Primary	sends	serial	order	to	the	secondaries	and	tells	
them	to	perform	the	write	

• Secondaries	respond	to	the	primary	

• Primary	responds	back	to	client	

• Note:	if	write	fails	at	one	of	the	chunkservers,	client	is	
informed	and	retries	the	write



Atomic	Record	Append

• GFS	client	contacts	the	primary	

• Primary	chooses	and	returns	the	offset	

• Client	appends	the	data	to	each	replica	at	least	once	

• Actual	write	can	be	an	idempotent	RPC	(like	in	NFS)



Data	Corrup8on

• Files	stored	on	Linux	and	Linux	has	bugs	

• some8mes	silent	corrup8ons	

• Files	stored	on	disks	and	disks	are	not	fail	stop	

• stored	blocks	could	be	corrupted	

• rare	events	become	common	at	scale	

• Chunkserver	maintains	per-chunk	CRC	(64KB)



• Discussion:	Iden8fy	one	thing	that	you	would	improve	
about	GFS	and	suggest	an	alterna8ve	design



~15	years	later

• Scale	is	much	bigger	

• now	10K	servers	instead	of	1K,	100	PB	instead	of	100	TB	

• Bigger	change:	updates	to	small	files	

• Around	2010:	incremental	updates	of	the	Google	
search	index



GFS	->	Colossus

• Main	scalability	limit	of	GFS:	single	master	

• fixed	by	par88oning	the	metadata	

• ~100M	files	per	master,	smaller	chunk	sizes	(1MB)	

• Reduce	storage	overhead	using	erasure	coding



BigTable	Mo8va8on

• Lots	of	(semi)-structured	data	at	Google	

• URLs:	contents,	crawl	metadata,	links	

• Per-user	data:	preference	sekngs,	recent	queries	

• Geographic	loca8ons:	physical	en88es,	roads,	satellite	
image	data	

• Scale	is	large:	

• Billions	of	URLs,	many	versions/page	

• Hundreds	of	millions	of	users,	queries/sec	

• 100TB+	of	satellite	image	data



Why	not	use	commercial	DB?

• Scale	is	too	large	for	most	commercial	databases	

• Even	if	it	weren’t,	cost	would	be	very	high	

• Building	internally	means	system	can	be	applied	across	
many	projects	

• Low-level	storage	op8miza8ons	help	performance	
significantly	

• Much	harder	to	do	when	running	on	top	of	a	database	layer



Goals

• Want	asynchronous	processes	to	be	con8nuously	upda8ng	
different	pieces	of	data	

• want	access	to	most	current	data	

• Need	to	support:	

• very	high	read/write	rates	(million	ops/s)	

• efficient	scans	over	all	or	interes8ng	subsets	

• efficient	joins	of	large	datasets	

• Open	want	to	examine	data	changes	over	8me	

• E.g.,	contents	of	web	page	over	mul8ple	crawls



Building	blocks

• GFS:	stores	persistent	state	

• Scheduler:	schedules	jobs/nodes	for	tasks	

• Lock	service:	master	elec8on	

• MapReduce:	data	analy8cs	

• BigTable:	semi-structured	data	store	

• Ques8on:	how	do	these	pieces	fit	together?



BigTable	Overview

• Data	Model,	API	

• Implementa8on	structure	

• Tablets,	compac8ons,	locality	groups,	...	

• Details	

• Shared	logs,	compression,	replica8on,	...



Basic	Data	Model

• Distributed	mul8-dimensional	sparse	map	

• (row,	column,	8mestamp)	-->	cell	contents	

• Good	match	for	most	of	Google’s	applica8ons



Rows

• Name	is	an	arbitrary	string	

• Access	to	data	in	a	row	is	atomic	

• Row	crea8on	is	implicit	upon	storing	data	

• Rows	ordered	lexicographically	

• Rows	close	together	lexicographically	usually	on	one	or	a	
small	number	of	machines



Tablets

• Large	tables	broken	into	“tablets”	at	row	boundaries	

• Tablet	holds	con8guous	range	of	rows	

• Aim	for	100MB	to	200MB	of	data/tablet	

• Serving	machine	responsible	for	about	100	tablets	

• Fast	recovery	(100	machines	each	pick	up	1	tablet	from	
failed	machine)	

• Fine-grained	load	balancing



Tablets	&	Splikng



Loca8ng	Tablets

• Since	tablets	move	around	from	server	to	server,	
given	a	row,	how	do	clients	find	the	right	machine?	

• Need	to	find	tablet	whose	row	range	covers	the	target	row	

• One	approach:	could	use	the	BigTable	master	

• Central	server	almost	certainly	would	be	bosleneck	in	large	
system	

• Instead	store	special	tables	containing	tablet	loca8on	
info	in	BigTable	cell	itself



Loca8ng	Tablets

• Approach:	3-level	hierarchical	lookup	scheme	for	tablets	

• Loca8on	is	ip:port	of	relevant	server	

• 1st	level:	bootstrapped	from	lock	server,	points	to	META0	

• 2nd	level:	Uses	META0	data	to	find	owner	of	META1	tablet	

• 3rd	level:	META1	table	holds	loca8on	of	tablets	of	all	other	tables



Basic	Implementa8on

• Writes	go	to	log	then	to	in-memory	table	“memtable”	
(key,	value)	

• Periodically	move	in-memory	table	to	disk	

• SSTable	is	immutable	ordered	subset	of	table;	range	of	keys	
&	subset	of	their	columns	

• Tablet	=	all	of	the	SSTables	for	one	key	range	plus	the	
memtable	

• some	values	maybe	stale	(due	to	new	writes)



Basic	Implementa8on

• Reads:	maintain	in-memory	map	of	keys	to	SSTables	

• current	version	is	in	exactly	one	SSTable	or	memtable	

• may	have	to	read	many	SSTables	to	get	all	of	the	columns	

• Compac8on:	

• SSTables	similar	to	segments	in	LFS	

• need	to	clean	old	SSTables	to	reclaim	space	

• clean	by	merging	mul8ple	SSTables	into	new	one



• How	do	you	op8mize	the	system	outlined	above?



Bloom	filters

• Goal:	efficient	test	for	set	membership:	member(key)	->	true/
false	

• false	==>	definitely	not	in	the	set	

• true	==>	probably	is	in	the	set	

• Generally	supports	adding	elements	but	not	removing	them	

• Basic	version:	m	bit	posi8ons,	k	hash	func8ons	

• For	insert:	compute	k	bit	loca8ons,	set	to	1	

• For	lookup:	compute	k	loca8ons,	check	for	1	

• BigTable:	avoid	reading	SSTables	for	elements	that	are	not	
present;	saves	many	seeks


