Google File System

Google File System

® Google needed a good distributed file system

® \Why not use an existing file system?

Workload Considerations

® Optimize cost: don’t use high-end machines, instead tolerate
failures when they happen

® Dedicated computers

® In 2000, 2500+ for search; 15K+ by 2004, and 250K+ by 2007
f huge files; fe illion of 100MB files

'

odest” numbe

GFS Design Decisions

® Files stored as chunks (fixed size: 64MB)

® Reliability through replication

® each chunk replicated over 3+ chunkservers

® Simple master to coordinate access, keep metadata

GFS Architecture

‘A- ’ "Iic:l[‘.()[] - . RN actor 'f -~ 4 e
Pl (file name, Chunk index) | GFS master 1100 /bat

B8 AN . r - - Ve
G IS client File namespace chunk 2ef0

(Chunk handle,
chunk locaticns)

Legend:

mmmd Data messages

Instructions to chunkserver — Control messages
. Chunkserver state
(chhunk handle, byle 1ange)
G 'S chunkserver GI'S chunkserver

chunk deta : . : .
s Linux file system Linux file system

Design Points

® Shadow masters

® Minimize master involvement

® Never move data through it (only metadata)

Metadata

® Global metadata is stored on the master

® File and chunk namespaces

® Mapping from files to chunks

Durability

® Master has an operation log for persistent logging of
critical metadata updates

® each log write is 2PC to multiple remote machines

® replicated transactional redo log

Read Operations

Indexer

(1)

p—

(crawl_99, 2048 nytes)

(2)

(crawl_99,
incex: 3)

/

Ch_1001

/1 {3,812}

/

GFS Client

crawl_99

____a-"‘

(ch_1003,

{chun<servers:

4,7,5})

(3)

Ch_1002
{1,8,14}

N

Cn_1003
{4,7,9}

Read Operations

— Chunk Server #4
(4
"
(ch_1003,
{chunkservers:

4:7:?9/ ~ Chunk Server #7

Application

(2048 bytes of data) _—

./
- —’ //
GFS Client " ;048 bytes of
data) Chunk Server #9

(s)

Mutable Operations

® Mutation is write or append

® Goal: minimize master
involvement

Secondury
Replica A

® Lease mechanism

® Master picks one replica Primary
Replica

as primary; gives it a Legend:

lease — Control
Secondary —

Replica B

® Primary defines a serial
order of mutations

® Data flow decoupled from
control flow

Write Operations

® Application originates write request

® GFS client translates request from (fname, data) -->
(fname, chunk-index) sends it to master

® Master responds with chunk handle and

Write Operations (contd.)

® Primary determines serial order for data instances
stored in its buffer and writes the instances in that

order to the chunk

® Primary sends serial order to the secondaries and tells
them to perform the write

Atomic Record Append

® GFS client contacts the primary

® Primary chooses and returns the offset

Data Corruption

® Files stored on Linux and Linux has bugs

® sometimes silent corruptions

® Files stored on disks and disks are not fail stop

~15 years later

® Scale is much bigger

® now 10K servers instead of 1K, 100 PB instead of 100 TB

GFS -> Colossus

® Main scalability limit of GFS: single master

® fixed by partitioning the metadata

BigTable Motivation

® Lots of (semi)-structured data at Google

® URLs: contents, crawl metadata, links

® Per-user data: preference settings, recent queries

® Geographic locations: physical entities, roads, satellite
image data

o

Why not use commercial DB?

® Scale is too large for most commercial databases

® Even if it weren’t, cost would be very high

® Building internally means system can be applied across
many projects

Goals

® \Want asynchronous processes to be continuously updating
different pieces of data

® want access to most current data

® Need to support:

® very high read/write rates (million ops/s

Building blocks

® GFS: stores persistent state

® Scheduler: schedules jobs/nodes for tasks

® Lock service: master election

BigTable Overview

® Data Model, API

® Implementation structure

Basic Data Model

® Distributed multi-dimensional sparse map
® (row, column, timestamp) --> cell contents

® Good match for most of Google’s applications

"contents:” "anchor:cnnsi.com” "anchor:my.locok.ca”

"com.cnn.www"

Rows

® Name is an arbitrary string

® Access to datain arow is atomic

® Row creation is implicit upon storing da

Tablets

® Large tables broken into “tablets” at row boundaries

® Tablet holds contiguous range of rows

® Aim for 100MB to 200MB of data/tablet

Tablets & Splitting

“language” “contents”

} .

dda.com

cnrn.com

cnn.comy/sports.html

TABLETS

Website.com

Zuppa.com/menu.html

Locating Tablets

® Since tablets move around from server to server,
given a row, how do clients find the right machine?

® Need to find tablet whose row range covers the target row

® One approach: could use the BigTable master

Locating Tablets

® Approach: 3-level hierarchical lookup scheme for tablets
® |ocationisip:port of relevant server
® 1stlevel: bootstrapped from lock server, points to METAO
® 2nd level: Uses METAO data to find owner of META1 tablet

® 3rd level: META1 table holds location of tablets of all other tables

UserTable1
e A
METADATA

Chubby file {15 METADATA tzbiet)

mes

Basic Implementation

® Writes go to log then to in-memory table “memtable”
(key, value)

® Periodically move in-memory table to disk

® SSTable isimmutable ordered subset of table; range of keys

Basic Implementation

® Reads: maintain in-memory map of keys to SSTables

® current version is in exactly one SSTable or memtable

® may have to read many SSTables to get all of the columns

Bloom filters

® Goal: efficient test for set membership: member(key) -> true/
false

® false ==> definitely not in the set
® true ==> probably is in the set

® Generally supports adding elements but not removing them

o

