
Consistent Distributed 
Storage



Megastore	System

• Paper	is	not	specific	about	who	is	the	actual	customer	
of	the	system	

• Guess	(supported	by	Spanner	paper):	consumer-
facing	web	sites	and	Google	App	Engine	

• selling	storage	as	a	service	

• not	just	an	internal	tool	

• Examples:	email,	Picasa,	calendar,	Android	Market



What	might	the	customer	want?

• 100%	available	==>	replicaNon,	seamless	fail-over	

• Never	lose	data	==>	don’t	ack	unNl	truly	durable	

• Replicated	at	mulNple	data	centers,	for	low	latency	
and	availability	

• Consistent	for	transac'onal	operaNons	

• High	performance



TransacNon	SemanNcs

• TransacNon:	BEGIN	reads	and	writes	END	

• Serializable:	

• as	if	executed	one	at	a	Nme,	in	some	order	

• no	intermediate	state	visible	

• no	read-modify-write	races	

• transacNon’s	reads	see	data	at	just	one	point	in	Nme	

• Durable



ConvenNonal	Wisdom

• Hard	to	have	both	consistency	and	performance	in	the	wide	
area	(as	consistency	requires	communicaNon)	

• Popular	soluNon:	relaxed	consistency	

• read/write	local	replica,	send	writes	in	background	

• reads	may	yield	stale	data,	mulNple	write	operaNons	may	
not	be	atomic,	RMW	races	may	yield	lost	updates,	etc.



Basic	Design

• Each	data	center:	BigTable	cluster,	applicaNon	server	+	
Megastore	library,	replicaNon	server,	coordinator	

• Data	in	BigTable	is	idenNcal	at	all	replicas



Se]ng

• Browser	web	requests	may	arrive	at	any	replica	

• That	is,	at	the	applicaNon	server	at	any	replica	

• There	is	no	special	primary	replica	

• So	could	be	concurrent	transacNons	on	same	data	from	
mulNple	replicas



Se]ng

• TransacNons	can	only	use	data	within	a	single	“enNty	group”	

• An	enNty	group	is	one	row	or	a	set	of	related	rows	

• Defined	by	applicaNon	

• E.g.,	all	my	email	messages	may	be	in	a	single	enNty	group;	
yours	will	be	in	a	different	one	

• Example	transacNon:	

• Move	msg	321	from	Inbox	to	Personal	

• Not	a	transacNon:	deliver	message	to	both	kaiyuan	and	
paul



EnNty	Groups	Example



BigTable	Layout



• How	would	you	build	a	wide-area	storage	system	
using	Paxos?		How	do	you	achieve	good	performance?



TransacNons

• Each	enNty	group	has	a	log	of	transacNons	

• Stored	in	BigTable,	a	copy	at	each	replica	

• Data	in	BigTable	should	be	a	result	of	playing	log	

• TransacNon	code	in	applicaNon	server:	

• Find	highest	log	entry	#	(n)	

• Read	data	from	local	BigTable	

• Accumulate	writes	in	temporary	storage	

• Create	log	entry:	the	set	of	writes	

• Use	Paxos	to	agree	that	log	entry	n+1	is	new	entry	

• Apply	writes	in	log	entry	to	BigTable	data



Notes

• Commit	requires	waiNng	for	inter-datacenter	
messages	

• Only	a	majority	of	replicas	need	to	respond	

• Non-responders	may	miss	some	log	entries	

• Later	transacNons	will	need	to	repair	this	

• There	might	be	conflicNng	transacNons



Concurrent	TransacNons

• Data	race:	e.g.,	two	clients	doing	“x	=	x+1”	

• Megastore	allows	one	to	commit,	aborts	the	others	

• ConservaNvely	prohibits	concurrency	within	an	enNty	group	

• So	does	not	use	tradiNonal	DB	locking;	which	would	allow	
concurrency	if	non-overlapping	data	

• Conflicts	are	caught	during	Paxos	agreement	

• ApplicaNon	server	will	find	that	some	other	transacNon	got	
log	entry	n+1	

• ApplicaNon	must	retry	the	whole	transacNon



Reads

• Must	get	latest	data	

• Would	like	to	avoid	inter-replica	communicaNon	

• Ideally	would	read	from	local	BigTable	w/o	talking	to	
any	other	replicas		

• Problems?	

• SoluNons?



RotaNng	Leader

• Each	accepted	log	entry	indicates	a	"leader"	for	next	
entry	

• Leader	gets	to	choose	who	submits	proposal	#0	for	next	log	
entry	

• First	replica	to	ask	wins	that	right	

• All	replicas	act	as	if	they	had	already	received	the	prepare	
for	#0	

• Why	and	when	does	this	help?



Log	Format



What	if	concurrent	
commits?

• Leader	will	give	one	the	right	to	send	accepts	for	
proposal	#0	

• The	other	will	send	prepares	for	higher	proposal	#	

• The	higher	proposal	may	sNll	win!	

• So	proposal	#0	is	not	a	guarantee	of	winning	

• Just	eliminates	one	round	in	the	common	case



“Write”	Details

• Ask	leader	for	permission	to	use	proposal	#0	

• If	“no”,	send	Paxos	prepare	messages	

• Send	accepts,	repeat	prepares	if	no	majority	

• Send	invalidate	to	coordinator	of	ANY	replica	that	did	
not	accept	

• Apply	transacNon’s	writes	to	as	many	replicas	as	
possible	

• If	you	don’t	win,	return	an	error;	caller	will	rerun	
transacNon



Failure:	Overloaded	replica	(R1)

• R1	won’t	respond	

• TransacNons	can	sNll	commit	as	long	as	majority	
respond	

• Need	to	talk	to	R1	coordinator	to	clear	the	flag	it	
maintains	for	being	up-to-date	

• Reads	at	R1	will	use	a	different	replica



Failure:	replica	disconnecNon

• Designers	view	this	as	rare	

• Replica	won’t	respond	to	Paxos	(OK),	but	coordinator	not	
responding	is	a	problem	

• Write	will	block	

• Paper	implies	that	coordinators	have	leases	

• Each	must	renew	lease	at	every	replica	periodically	

• If	it	doesn’t/can’t	

• Commits	can	ignore	the	replica	

• Replica	marks	all	enNty	groups	as	“not	up	to	date”



MegaStore	Summary

• High	availability	through	replicaNon,	seamless	fail-
over	

• Replicated	at	mulNple	data	centers,	for	low	latency	
and	availability	

• Ack	only	when	truly	durable	

• Consistency	for	transac'onal	operaNons	

• Performance	improvements



Spanner

• Picks	up	from	where	MegaStore	leo	off	

• Some	commonality	in	terms	of	mechanisms	but	a	
different	implementaNon	

• Key	addiNons:	

• general-purpose	transacNons	across	enNty	groups	

• higher	performance	

• “TrueTime”	API	and	“external	consistency”	

• mulN-version	data	store



Example:	Social	Network

• Consider	a	simple	schema:	

• User	posts	

• Friend	lists	

• Looks	like	a	database,	but:	

• shard	data	across	mulNple	conNnents	

• shard	data	across	1000s	of	machines	

• replicated	data	within	a	conNnent/country	

• Lock-free	read	only	transacNons



Read	TransacNons

• Example:	Generate	a	page	of	friends’	recent	posts	

• Consistent	view	of	friend	list	and	their	posts	

• Want	to	support:	

• remove	friend	X	

• post	something	about	friend	X



• MegaStore:	transacNons	within	enNty	groups	

• Spanner:	transacNons	across	enNty	groups	

• How	can	you	support	transacNons	across	enNty	groups,	
where	each	enNty	group	is	replicated	across	datacenters?



Spanner	TransacNon

• Two-phase	commit	layered	on	top	of	Paxos	

• Paxos	provides	reliability	and	replicaNon	

• 2PC	allows	coordinaNon	of	different	groups	responsible	for	
different	datasets	

• Layering	provides	non-blocking	2PC	

• Uses	2-phase	locking	to	deal	with	concurrency



Spanner’s	TimeStamps

• TrueTime:	“Global	wall-clock	Nme”	with	bounded	
uncertainty	

• Returns	a	lower-bound	and	upper-bound	on	wall-
clock	Nme

Nme

earliest latest

TT.now()

2*ε



Spanner	TransacNon

• Each	parNcipant	selects	a	proposed	Nmestamp	for	the	
transacNon	greater	than	what	it	has	commised	earlier	

• Coordinator	assigns	the	transacNon	a	Nmestamp	that	is	
greater	than	these	Nmestamps	

• Coordinator	waits	unNl	the	chosen	Nmestamp	is	definitely	in	
the	past	

• Then	noNfies	the	client	and	the	parNcipants	of	the	
transacNon’s	Nmestamp	

• ParNcipants	release	the	locks



Read	TransacNons

• Currently	handled	at	the	group	leaders	

• Two	forms:	read	transacNons	across	mulNple	groups,	
read	transacNon	across	a	single	group	

• In	both	cases:	

• check	whether	there	is	an	ongoing	transacNon	

• asribute	the	earliest	possible	Nmestamp	that	is	safe	

• wait	for	a	certain	period	before	responding



Summary

• GFS:	blob	store	abstracNon	

• BigTable:	semistructured	table	abstracNon	within	a	
datacenter	

• MegaStore:	limited	transacNons	across	mulNple	
datacenters	

• Spanner:	more	general	transacNons	across	mulNple	
datacenters


