
Distributed	Hash	Tables

What	is	a	DHT?

• Hash	Table	
• data	structure	that	maps	“keys”	to	“values”	

• essen=al	building	block	in	so?ware	systems	

• Distributed	Hash	Table	(DHT)		
• similar,	but	spread	across	many	hosts	

• Interface		
• insert(key,	value)	

• lookup(key)

How	do	DHTs	work?

Every	DHT	node	supports	a	single	opera=on:	

• Given	key	as	input;	route	messages	to	node	holding	
key	

• DHTs	are	content-addressable

DHT: basic idea

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Neighboring nodes are “connected” at the application-level

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

DHT: basic idea

insert(K1,V1)

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

insert(K1,V1)

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

(K1,V1)

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

retrieve (K1)

DHT: basic idea

Operation: take key as input; route messages to node
holding key

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

• For	what	seKngs	do	DHTs	make	sense?	

• Why	would	you	want	DHTs?

Fundamental	Design	Idea	I
• Consistent	Hashing	

• Map	keys	and	nodes	to	an	identifier	space;	implicit	
assignment	of	responsibility

Identifiers
A C DB

Key

Mapping performed using hash functions (e.g., SHA-1)

11111111110000000000

• What is the advantage of consistent hashing?

Consistent	Hashing

Fundamental	Design	Idea	II
• Prefix	/	Hypercube	rou=ng

Source

Destination

State	Assignment	in	Chord

• Nodes	are	randomly	chosen	points	on	a	clock-wise	ring	
of	values	

• Each	node	stores	the	id	space	(values)	between	itself	
and	its	predecessor	

 d(100, 111) = 3

000

101

100

011

010

001

110

111

Chord Topology and Route Selection

• Neighbor	selec=on:	ith	neighbor	at	2i	distance	

• Route	selec=on:	pick	neighbor	closest	to	des=na=on

000

101

100

011

010

001

110

111 d(000, 001) = 1

 d(000, 010) = 2

 d(000, 001) = 4

110

Joining	Node

• Assume	system	starts	out	w/	correct	rou=ng	tables.	

• Use	rou=ng	tables	to	help	the	new	node	find	
informa=on.	

• New	node	m	sends	a	lookup	for	its	own	key	

• This	yields	m.successor	

• m	asks	its	successor	for	its	en=re	finger	table.	

• Tweaks	its	own	finger	table	in	background	

• By	looking	up	each	m	+	2^i

Rou=ng	to	new	node

• Ini=ally,	lookups	will	go	to	where	it	would	have	gone	
before	m	joined	

• m's	predecessor	needs	to	set	successor	to	m.		Steps:	

• Each	node	keeps	track	of	its	current	predecessor	

• When	m	joins,	tells	its	successor	that	its	predecessor	has	
changed.	

• Periodically	ask	your	successor	who	its	predecessor	is:	

• If	that	node	is	closer	to	you,	switch	to	that	guy.	

• this	is	called	"stabiliza=on"	

• Correct	successors	are	sufficient	for	correct	lookups!

Concurrent	Joins

• Two	new	nodes	with	very	close	ids,	might	have	same	
successor.	

• Example:	

• 		Ini=ally	40,	70	

• 		50	and	60	join	concurrently	

• 		at	first	40,	50,	and	60	think	their	successor	is	70!	

• 		which	means	lookups	for	45	will	yield	70,	not	50	

• 		a?er	one	stabiliza=on,	40	and	50	will	learn	about	60	

• 		then	40	will	learn	about	50

Node	Failures

• Assume	nodes	fail	w/o	warning	(harder	issue)	

• Other	nodes'	rou=ng	tables	refer	to	dead	node.	

• Dead	node's	predecessor	has	no	successor.	

• If	you	try	to	route	via	dead	node,	detect	=meout,	
route	to	numerically	closer	entry	instead.	

• Maintain	a	_list_	of	successors:	r	successors.	

• Lookup	answer	is	first	live	successor	>=	key	

• or	forward	to	*any*	successor	<	key

Issues

• How	do	you	characterize	the	performance	of	DHTs?	

• How	do	you	improve	the	performance	of	DHTs?

Security

• Self-authen=ca=ng	data,	e.g.	key	=	SHA1(value)	

• So	DHT	node	can't	forge	data,	but	it	is	immutable	data	

• Can	someone	cause	millions	of	made-up	hosts	to	
join?		Sybil	aqack!	

• Can	disrupt	rou=ng,	eavesdrop	on	all	requests,	etc.	

• Maybe	you	can	require	(and	check)	that	node	ID	=	SHA1(IP	
address)	

• How	to	deal	with	route	disrup=ons,	storage	
corrup=on?	

• Do	parallel	lookups,	replicated	store,	etc.

CAP	Theorem

• Can't	have	all	three	of:	consistency,	availability,	
tolerance	to	par==ons	

• proposed	by	Eric	Brewer	in	a	keynote	in	2000	

• later	proven	by	Gilbert	&	Lynch	[2002]	

• but	with	a	specific	set	of	defini=ons	that	don't	necessarily	
match	what	you'd	assume	(or	Brewer	meant!)	

• really	influen=al	on	the	design	of	NoSQL	systems	

• and	really	controversial;	“the	CAP	theorem	encourages	
engineers	to	make	awful	decisions.”	(Stonebraker)	

• usually	misinterpreted!

Misinterpreta=ons

• pick	any	two:	consistency,	availability,	par==on	
tolerance	

• “I	want	my	system	to	be	available,	so	consistency	has	to	go”	

• or	"I	need	my	system	to	be	consistent,	so	it's	not	going	to	be	
available”	

• three	possibili=es:	CP,	AP,	CA	systems

Issues	with	CAP

• what	does	it	mean	to	choose	or	not	choose	par==on	
tolerance?	

• it's	a	property	of	the	environment,	other	two	are	goals	

• in	other	words,	what's	the	difference	between	a	"CA"	and	
"CP"	system?	both	give	up	availability	on	a	par==on!	

• beqer	phrasing:	if	the	network	can	have	par==ons,	do	
we	give	up	on	consistency	or	availability?

Another	"P":	performance

• providing	strong	consistency	means	coordina=ng	
across	replicas	

• besides	par==ons,	also	means	expensive	latency	cost	

• at	least	some	opera=ons	must	incur	the	cost	of	a	
wide-area	RTT	

• can	do	beqer	with	weak	consistency:	only	apply	
writes	locally	

• then	propagate	asynchronously

CAP	Implica=ons

• can't	have	consistency	when:	

• want	the	system	to	be	always	online	

• need	to	support	disconnected	opera=on	

• need	faster	replies	than	majority	RTT	

• in	prac=ce:	can	have	consistency	and	availability	
together	under	

• realis=c	failure	condi=ons	

• a	majority	of	nodes	are	up	and	can	communicate	

• can	redirect	clients	to	that	majority

Dynamo

• Real	DHT	(1-hop)	used	inside	datacenters	

• E.g.,	shopping	cart	at	Amazon	

• More	available	than	Spanner	etc.	

• Less	consistent	than	Spanner	

• Influen=al	—	inspired	Cassandra

Context

• SLA:	99.9th	delay	latency	<	300ms	

• constant	failures	

• always	writeable

Quorums

• Sloppy	quorum:	first	N	reachable	nodes	a?er	the	
home	node	on	a	DHT	

• Quorum	rule:	R	+	W	>	N	

• allows	you	to	op=mize	for	the	common	case	

• but	can	s=ll	provide	inconsistencies	in	the	presence	of	
failures	(unlike	Paxos)

Eventual	Consistency

• accept	writes	at	any	replica	

• allow	divergent	replicas	

• allow	reads	to	see	stale	or	conflic=ng	data	

• resolve	mul=ple	versions	when	failures	go	away	

• latest	version	if	no	conflic=ng	updates	

• if	conflicts,	reader	must	merge	and	then	write

More	Details

• Coordinator:	successor	of	key	on	a	ring	

• Coordinator	forwards	ops	to	N	other	nodes	on	the	
ring	

• Each	opera=on	is	tagged	with	the	coordinator	
=mestamp	

• Values	have	an	associated	“vector	clock”	of	
coordinator	=mestamps	

• Gets	return	mul=ple	values	along	with	the	vector	
clocks	of	values	

• Client	resolves	conflicts	and	stores	the	resolved	value

