Distributed Hash Tables




What is a DHT?

e Hash Table

e data structure that maps “keys” to “values”

e essential building block in software systems

e Distributed Hash Table (DHT)




How do DHTs work?

Every DHT node supports a single operation:




DHT: basic idea




DHT: basic idea

v
KV
. \ v \
KV




DHT: basic idea

KV
\ Vv \
KV




DHT: basic idea

KV
\ Vv \
KV




DHT: basic idea




DHT: basic idea

(K1,V4)




DHT: basic idea

-

g TNy







Fundamental Design Idea |

® Consistent Hashing

® Map keys and nodes to an identifier space; implicit
assignment of responsibility

A B C D

Identifiers —@ ®




Consistent Hashing




Fundamental Design Idea |

® Prefix / Hypercube routing




State Assignment in Chord

0]0]0)
111 001

110 010

101
d(100, 111) =3

011




Chord Topology and Route Selection

000

111 110. 001 d(000,001)=1

110 010 d(000, 010) =2

101 011




Joining Node

® Assume system starts out w/ correct routing tables.

® Use routing tables to help the new node find
information.

® New node m sends a lookup for its own key

— L = o —




Routing to new node

® Initially, lookups will go to where it would have gone
before m joined

® m's predecessor needs to set successor to m. Steps:

® Each node keeps track of its current predecessor

® When m joins, tells its successor that its predecessor has




Concurrent Joins

® Two new nodes with very close ids, might have same
SuUCCessot.

® Example:

® |[nitially 40, 70




Node Failures

® Assume nodes fail w/o warning (harder issue)
® Other nodes' routing tables refer to dead node.

® Dead node's predecessor has no successor.

® If you try to route via dead node, detect timeout,

o




BYES




Security

® Self-authenticating data, e.g. key = SHA1(value)

® So DHT node can't forge data, but it is immutable data

® Can someone cause millions of made-up hosts to
join? Sybil attack!

® Can disrupt routing, eavesdrop on all requests, etc.

- [JFERY &k




CAP Theorem

® Can't have all three of: consistency, availability,
tolerance to partitions

® proposed by Eric Brewer in a keynote in 2000
® later proven by Gilbert & Lynch [2002]

® but with a specific set of definitions that don't necessarily




Misinterpretations

® pick any two: consistency, availability, partition
tolerance

® “| want my system to be available, so consistency has to go”

e




Issues with CAP

® what does it mean to choose or not choose partition
tolerance?

® it's a property of the environment, other two are goals




Another "P": performance

® providing strong consistency means coordinating
across replicas

besides partitions, also means expensive latency cost

at least some operations must incur the cost of a




CAP Implications

® can't have consistency when:

® want the system to be always online

® need to support disconnected operation

® need faster replies than majority RTT




Dynamo

® Real DHT (1-hop) used inside datacenters

® E.g., shopping cart at Amazon




Context

® SLA: 99.9th delay latency < 300ms




Quorums

® Sloppy quorum: first N reachable nodes after the
home node on a DHT

- ® Quorumrule:R+W >N




Eventual Consistency

® accept writes at any replica
® allow divergent replicas

® allow reads to see stale or conflicting data




More Details

® Coordinator: successor of key on a ring

® Coordinator forwards ops to N other nodes on the
ring

® Each operation is tagged with the coordinator
timestamp




