
Big	Data	Systems



Big	Data	Parallelism

• Huge	data	set	

• crawled	documents,	web	request	logs,	etc.	

• Natural	parallelism:	

• can	work	on	different	parts	of	data	independently	

• image	processing,	grep,	indexing,	many	more



Challenges

• Parallelize	applicaFon	

• Where	to	place	input	and	output	data?	

• Where	to	place	computaFon?	

• How	to	communicate	data?		How	to	manage	threads?		How	to	
avoid	network	boJlenecks?	

• Balance	computaFons		

• Handle	failures	of	nodes	during	computaFon	

• Scheduling	several	applicaFons	who	want	to	share	
infrastructure



Goal	of	MapReduce

• To	solve	these	distribuFon/fault-tolerance	issues	once	
in	a	reusable	library	

• To	shield	the	programmer	from	having	to	re-solve	them	for	
each	program	

• To	obtain	adequate	throughput	and	scalability	

• To	provide	the	programmer	with	a	conceptual	
framework	for	designing	their	parallel	program



Map	Reduce

• Overview:	

• ParFFon	large	data	set	into	M	splits	

• Run	map	on	each	parFFon,	which	produces	R	local	
parFFons;	using	a	parFFon	funcFon	R	

• Hidden	intermediate	shuffle	phase	

• Run	reduce	on	each	intermediate	parFFon,	which	produces	
R	output	files



Details

• Input	values:	set	of	key-value	pairs	

• Job	will	read	chunks	of	key-value	pairs	

• “key-value”	pairs	a	good	enough	abstracFon	

• Map(key,	value):	

• System	will	execute	this	funcFon	on	each	key-value	pair	

• Generate	a	set	of	intermediate	key-value	pairs	

• Reduce(key,	values):	

• Intermediate	key-value	pairs	are	sorted	

• Reduce	funcFon	is	executed	on	these	intermediate	key-
values



Count	words	in	web-pages

Map(key,	value)	{	
				//	key	is	url	
				//	value	is	the	content	of	the	url	
				For	each	word	W	in	the	content	
								Generate(W,	1);	
}	

Reduce(key,	values)	{	
				//	key	is	word	(W)	
				//	values	are	basically	all	1s	
				Sum	=	Sum	all	1s	in	values	

				//	generate	word-count	pairs	
				Generate	(key,	sum);		
}



Reverse	web-link	graph

Go	to	google	advanced	search:		
"find	pages	that	link	to	the	page:"	cnn.com	

Map(key,	value)	{	
				//	key	=	url	
				//	value	=	content	
				For	each	url,	linking	to	target	
								Generate(output	target,	url);	
}	

Reduce(key,	values)	{	
				//	key	=	target	url	
				//	values	=	all	urls	that	point	to	the	target	url	
				Generate(key,	list	of	values);	
}



• QuesFon:	how	do	we	implement	“join”	in	
MapReduce?	

• Imagine	you	have	a	log	table	L	and	some	other	table	R	that	
contains	say	user	informaFon	

• Perform	Join	(L.uid	==	R.uid)	

• Say	size	of	L	>>	size	of	R	

• Bonus:	consider	real	world	zipf	distribuFons



Comparisons

• Worth	comparing	it	to	other	programming	models:	

• distributed	shared	memory	systems	

• bulk	synchronous	parallel	programs	

• key-value	storage	accessed	by	general	programs	

• More	constrained	programming	model	for	MapReduce	

• Other	models	are	latency	sensiFve,	have	poor	
throughput	efficiency	

• MapReduce	provides	for	easy	fault	recovery



ImplementaFon

• Depends	on	the	underlying	hardware:	shared	
memory,	message	passing,	NUMA	shared	memory,	
etc.	

• Inside	Google:	

• commodity	workstaFons	

• commodity	networking	hardware	(1Gbps	-	10Gbps	now	-	at	
node	level	and	much	smaller	bisecFon	bandwidth)	

• cluster	=	100s	or	1000s	of	machines	

• storage	is	through	GFS



MapReduce	Input

• Where	does	input	come	from?	

• Input	is	striped+replicated	over	GFS	in	64	MB	chunks	

• But	in	fact	Map	always	reads	from	a	local	disk	

• They	run	the	Maps	on	the	GFS	server	that	holds	the	data	

• Tradeoff:	

• Good:	Map	reads	at	disk	speed	(local	access)	

• Bad:	only	two	or	three	choices	of	where	a	given	Map	can	run	

• potenFal	problem	for	load	balance,	stragglers



Intermediate	Data

• Where	does	MapReduce	store	intermediate	data?	

• On	the	local	disk	of	the	Map	server	(not	in	GFS)	

• Tradeoff:	

• Good:	local	disk	write	is	faster	than	wriFng	over	network	to	
GFS	server	

• Bad:	only	one	copy,	potenFal	problem	for	fault-tolerance	and	
load-balance



Output	Storage

• Where	does	MapReduce	store	output?	

• In	GFS,	replicated,	separate	file	per	Reduce	task	

• So	output	requires	network	communicaFon	--	slow	

• It	can	then	be	used	as	input	for	subsequent	MapReduce



QuesFon

• What	are	the	scalability	boJlenecks	for	MapReduce?



Scaling

• Map	calls	probably	scale	

• but	input	might	not	be	infinitely	parFFonable,	and	small	
input/intermediate	files	incur	high	overheads	

• Reduce	calls	probably	scale	

• but	can’t	have	more	workers	than	keys,	and	some	keys	could	
have	more	values	than	others	

• Network	may	limit	scaling	

• Stragglers	could	be	a	problem



Fault	Tolerance

• The	main	idea:	Map	and	Reduce	are	determinisFc,	
funcFonal,	and	independent	

• so	MapReduce	can	deal	with	failures	by	re-execuFng	

• What	if	a	worker	fails	while	running	Map?	

• Can	we	restart	just	that	Map	on	another	machine?	

• Yes:	GFS	keeps	copy	of	each	input	split	on	3	machines	

• Master	knows,	tells	Reduce	workers	where	to	find	
intermediate	files



Fault	Tolerance

• If	a	Map	finishes,	then	that	worker	fails,	do	we	need	to	re-
run	that	Map?	

• Intermediate	output	now	inaccessible	on	worker's	local	disk.	

• Thus	need	to	re-run	Map	elsewhere	unless	all	Reduce	workers	
have	already	fetched	that	Map's	output.	

• What	if	Map	had	started	to	produce	output,	then	
crashed?	

• Need	to	ensure	that	Reduce	does	not	consume	the	output	twice	

• What	if	a	worker	fails	while	running	Reduce?



Role	of	the	Master

• Keeps	state	regarding	the	state	of	each	worker	
machine	(pings	each	machine)	

• Reschedules	work	corresponding	to	failed	machines	

• Orchestrates	the	passing	of	locaFons	to	reduce	
funcFons



Load	Balance

• What	if	some	Map	machines	are	faster	than	others?	

• Or	some	input	splits	take	longer	to	process?	

• SoluFon:	many	more	input	splits	than	machines	

• Master	hands	out	more	Map	tasks	as	machines	finish	

• Thus	faster	machines	do	bigger	share	of	work	

• But	there's	a	constraint:	

• Want	to	run	Map	task	on	machine	that	stores	input	data	

• GFS	keeps	3	replicas	of	each	input	data	split	

• only	three	efficient	choices	of	where	to	run	each	Map	task



Stragglers

• Oqen	one	machine	is	slow	at	finishing	very	last	task	

• bad	hardware,	overloaded	with	some	other	work	

• Load	balance	only	balances	newly	assigned	tasks	

• SoluFon:	always	schedule	mulFple	copies	of	very	last	
tasks!



How	many	MR	tasks?

• Paper	uses	M	=	10x	number	of	workers,	R	=	2x.	

• More	=>		

• finer	grained	load	balance.	

• less	redundant	work	for	straggler	reducFon.	

• spread	tasks	of	failed	worker	over	more	machines	

• overlap	Map	and	shuffle,	shuffle	and	Reduce.	

• Less	=>	big	intermediate	files	w/	less	overhead.	

• M	and	R	also	maybe	constrained	by	how	data	is	striped	in	
GFS	(e.g.,	64MB	chunks)



Discussion

• what	are	the	constraints	imposed	on	map	and	reduce	
funcFons?	

• how	would	you	like	to	expand	the	capability	of	map	
reduce?



Map	Reduce	CriFcism

• “Giant	step	backwards”	in	programming	model	

• Sub-opFmal	implementaFon	

• “Not	novel	at	all”	

• Missing	most	of	the	DB	features	

• IncompaFble	with	all	of	the	DB	tools



Comparison	to	Databases

• Huge	source	of	controversy;	claims:	

• parallel	databases	have	much	more	advanced	data	processing	
support	that	leads	to	much	more	efficiency	

• support	an	index;	selecFon	is	accelerated	

• provides	query	opFmizaFon	

• parallel	databases	support	a	much	richer	semanFc	model		

• support	a	schema;	sharing	across	apps	

• support	SQL,	efficient	joins,	etc.



Where	does	MR	win?

• Scaling	

• Loading	data	into	system	

• Fault	tolerance	(parFal	restarts)	

• Approachability



Spark	MoFvaFon

• MR	Problems	

• cannot	support	complex	applicaFons	efficiently	

• cannot	support	interacFve	applicaFons	efficiently	

• Root	cause	

• Inefficient	data	sharing

In MapReduce, the only way to share data across 
jobs is stable storage -> slow!



MoFvaFon



Goal:	In-Memory	Data	Sharing



Challenge

• How	to	design	a	distributed	memory	abstracFon	that	
is	both	fault	tolerant	and	efficient?



Other	opFons

• ExisFng	storage	abstracFons	have	interfaces	based	on	
fine-grained	updates	to	mutable	state	

• E.g.,	RAMCloud,	databases,	distributed	mem,	Piccolo	

• Requires	replicaFng	data	or	logs	across	nodes	for	fault	
tolerance	

• Costly	for	data-intensive	apps	

• 10-100x	slower	than	memory	write



RDD	AbstracFon

• Restricted	form	of	distributed	shared	memory	

• immutable,	parFFoned	collecFon	of	records	

• can	only	be	built	through	coarse-grained	determinisFc	transformaFons	
(map,	filter,	join…)	

• Efficient fault-tolerance using lineage 

• Log coarse-grained operations instead of fine-grained data 
updates 

• An RDD has enough information about how it’s derived from other 
dataset 

• Recompute lost partitions on failure



Fault-tolerance



Design	Space



OperaFons

• TransformaFons	(e.g.	map,	filter,	groupBy,	join)	

• Lazy	operaFons	to	build	RDDs	from	other	RDDs	

• AcFons	(e.g.	count,	collect,	save)	

• Return	a	result	or	write	it	to	storage



lines	=	spark.textFile(“hdfs://...”)

errors	=	lines.filter(lambda	s:	s.startswith(“ERROR”))
messages	=	errors.map(lambda	s:	s.split(‘\t’)[2])	

messages.persist()

messages.filter(lambda	s:	“foo”	in	s).count()
messages.filter(lambda	s:	“bar”	in	s).count()
.	.	.

Base RDD
Transformed RDD

Action

Result: full-text search of Wikipedia in <1 sec 
(vs 20 sec for on-disk data) Result: scaled to 1 TB data in 5-7 sec 

(vs 170 sec for on-disk data)

Example: Mining Console Logs

Load error messages from a log into memory, then interactively search



RDD Fault Tolerance
RDDs track the transformations used to build 
them (their lineage) to recompute lost data

E.g:

messages	=	textFile(...).filter(lambda	s:	s.contains(“ERROR”))
																								.map(lambda	s:	s.split(‘\t’)[2])	
																								

HadoopRDD 
path = hdfs://…

FilteredRDD 
func = contains(...)

MappedRDD 
func = split(…)



Lineage

• Spark	uses	the	lineage	to	schedule	jobs	

• TransformaFon	on	the	same	parFFon	form	a	stage	

• Joins,	for	example,	are	a	stage	boundary	

• Need	to	reshuffle	data	

• A	job	runs	a	single	stage	

• pipeline	transformaFon	within	a	stage	

• Schedule	job	where	the	RDD	parFFon	is



Lineage	&	Fault	Tolerance

• Great	opportunity	for	efficient	fault	tolerance	

• Let's	say	one	machine	fails	

• Want	to	recompute	only	its	state	

• The	lineage	tells	us	what	to	recompute	

• Follow	the	lineage	to	idenFfy	all	parFFons	needed	

• Recompute	them	

• For	last	example,	idenFfy	parFFons	of	lines	missing	

• All	dependencies	are	“narrow”;	each	parFFon	is	dependent	on	
one	parent	parFFon	

• Need	to	read	the	missing	parFFon	of	lines;	recompute	the	
transformaFons



Fault	Recovery



Example:	PageRank



Optimizing Placement

• links	&	ranks	repeatedly	
joined	

• Can	co-parFFon	them	(e.g.,	
hash	both	on	URL)	

• Can	also	use	app	knowledge,	
e.g.,	hash	on	DNS	name	



PageRank	Performance



TensorFlow:	System	for	ML

• Open	Source,	lots	of	developers,	external	contributors	

• Used	in:	RankBrain	(rank	results),	Photos	(image	
recogniFon),	SmartReply	(automaFc	email	responses)



Three	types	of	ML

• Large	scale	training:	huge	datasets,	generate	models	

• Google’s	previous	DistBelief	for	100s	of	machines	

• Low	latency	inference:	running	models	in	datacenters,	
phones,	etc.	

• Custom	engines	

• TesFng	new	ideas	

• Single	node	flexible	systems	(Torch,	Theano)



TensorFlow

• Common	way	to	write	programs	

• Dataflow	+	Tensors	

• Mutable	state	

• Simple	mathemaFcal	operaFons	

• AutomaFc	differenFaFon



Background: NN Training

• Take	input	image	

• Compute	loss	funcFon	(forward	pass)	

• Compute	error	gradients	(backward	pass)	

• Update	weights	

• Repeat



ComputaFon	is	a	DFG



Example	Code



Example	Code



Parameter Server Architecture

Stateless	workers,	stateful	parameter	servers	(DHT)	
CommutaFve	updates	to	parameter	server



TensorFlow

• Flexible	architecture	for	mapping	operators	and	
parameter	servers	to	different	devices	

• Supports	mulFple	concurrent	execuFons	on	
overlapping	subgraphs	of	the	overall	graph	

• Individual	verFces	may	have	mutable	state	that	can	
be	shared	between	different	execuFons	of	the	graph



TensorFlow	handles	the	glue



Synchrony?

• Asynchronous	execuFon	is	someFmes	helpful,	
addresses	stragglers	

• Asynchrony	causes	consistency	problems	

• TensorFlow:	pursues	synchronous	training	

• But	adds	k	backup	machines	to	reduce	the	straggler	problem	

• Uses	domain	specific	knowledge	to	enable	this	opFmizaFon



Open	Research	Problems

• AutomaFc	placement:	data	flow	-	great	mechanism,	
but	not	clear	how	to	use	it	appropriately	

• mutable	state	-	split	round-robin	across	parameter	server	
nodes,	stateless	tasks	replicated	on	GPUs	as	much	as	it	fits,	
rest	on	CPUs	

• How	to	take	data	flow	representaFon	to	generate	
more	efficient	code?


