11. Ray Tracing

Geometric optics

Modern theories of light treat it as both a wave and a particle.

We will take a combined and somewhat simpler view of light - the view of geometric optics.

Here are the rules of geometric optics:

- Light is a flow of photons with wavelengths. We'll call these flows "light rays."
- Light rays travel in straight lines in free space.
- Light rays do not interfere with each other as they cross.
- Light rays obey the laws of reflection and refraction.
- Light rays travel form the light sources to the eye, but the physics is invariant under path reversal (reciprocity).

Reading

Required:

- Watt, sections 1.3-1.4, 12.1-12.5.1.

Further reading:

- Watt, chapter 14 and the rest of chapters 10 and 12.
- A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.]
- T. Whitted. An improved illumination model for shaded display. Communications of the ACM 23(6), 343-349, 1980. [In the reader.]

Eye vs. light ray tracing

Where does light begin?
At the light: light ray tracing (a.k.a., forward ray tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray tracing)

We will generally follow rays from the eye into the scene.

Precursors to ray tracing

Local illumination

- Cast one eye ray, then shade according to light

Appel (1968)

- Cast one eye ray + one ray to light

Whitted algorithm (cont'd)

Let's look at this in stages:

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the graphics community.

- Combines eye ray tracing + rays to light
- Recursively traces rays

Algorithm:
1.For each pixel, trace a primary ray in direction \mathbf{V} to the first visible surface.
2.For each intersection, trace secondary rays:

- Shadow rays in directions L_{i} to light sources
- Reflected ray in direction R.
- Refracted ray or transmitted ray in direction T.

Shading

A ray is defined by an origin \mathbf{p} and a unit direction \mathbf{d} and is parameterized by t :

$$
p+t d
$$

Let $I(\mathbf{p}, \mathbf{d})$ be the intensity seen along that ray. Then:

$$
I(\mathbf{p}, \mathbf{d})=I_{\text {direct }}+I_{\text {reflected }}+I_{\text {transmitted }}
$$

where

- $I_{\text {direct }}$ is computed from the Phong model
- $I_{\text {reflected }}=k_{r} I(\mathbf{q}, \mathbf{R})$
- $I_{\text {transmitted }}=k_{t} l(\mathbf{q}, \mathbf{T})$

Typically, we set $k_{r}=k_{\mathrm{s}}$ and $k_{t}=1-k_{\mathrm{s}}$.

Reflection and transmission

Law of reflection:

$$
\theta_{i}=\theta_{r}
$$

Snell's law of refraction:

$$
\eta_{\mathrm{i}} \sin \theta_{\mathrm{l}}=\eta_{\mathrm{t}} \sin \theta_{\mathrm{t}}
$$

where $\eta_{\mathrm{i}}, \eta_{\mathrm{t}}$ are indices of refraction.

Total Internal Reflection

The equation for the angle of refraction can be computed from Snell's law:

What happens when $\eta_{\mathrm{i}}>\eta_{\mathrm{t}}$?
When θ_{t} is exactly 90°, we say that θ_{l} has achieved the "critical angle" θ_{c}.

For $\theta_{l}>\theta_{c}$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the pixels.
function tracelmage (scene):
for each pixel (i,j) in image
$\mathbf{s}=\operatorname{pixe} /$ ToWorld(i,j)
p = COP
$\mathbf{d}=(\mathbf{s}-\mathbf{p}) /\|\mathbf{s}-\mathbf{p}\|$
$\mathrm{l}(\mathrm{i}, \mathrm{j})=\operatorname{traceRay}($ scene, $\mathbf{p}, \mathbf{d})$
end for
end function

Ray-tracing pseudocode, cont'd

function traceRay(scene, p, d):
(t, \mathbf{N}, material) \leftarrow intersect (scene, \mathbf{p}, \mathbf{d})
$\mathbf{q} \leftarrow \operatorname{ray}(\mathbf{p}, \mathbf{d})$ evaluated at t
I = shade()
$\mathbf{R}=$ reflectDirection ()
$\mathrm{I} \leftarrow \mathrm{I}+$ material. K_{r} * traceRay(scene, $\left.\mathbf{q}, \mathbf{R}\right)$
if ray is entering object then
n_i = index_of_air
n_t = material.index
else
n_i = material.index
n_t = index_of_air
if (notTIR (
))
then
$\mathbf{T}=$ refractDirection (
$\mathrm{I} \leftarrow \mathrm{I}+{\text { material. } \mathrm{k}_{\mathrm{t}} * \operatorname{traceRay}(\text { scene, } \mathbf{q}, \mathbf{T})}^{\text {(}}$
end if
return I
end function

Shading pseudocode

Next, we need to calculate the color returned by the shade function.
function shade(scene, material, $\mathbf{q}, \mathbf{N}, \mathbf{d}$):
$\mathrm{I} \leftarrow$ material. $\mathrm{k}_{\mathrm{e}}+$ material. $\mathrm{k}_{\mathrm{a}}{ }^{*}$ scene-> I_{a}
for each light source λ do:
atten $=\lambda$-> distanceAttenuation() *
λ-> shadowAttenuation()
$I \leftarrow I+$ atten*(diffuse term + spec term)
end for
return I
end function

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

Shadow atttenuation

Computing a shadow can be as simple as checking to see if a ray makes it to the light source:
function shadowAttenuation(scene, p)
$\mathbf{d}=(\mathbf{p}-\lambda$. position $)$.normalize()
$(\mathbf{q}, \mathbf{N}$, material) \leftarrow intersect(scene, $\mathbf{p}, \mathbf{d})$
if \mathbf{q} is before the light source then:
atten $=0$
else
atten $=1$
end if
return atten
end function

Q: What if there are transparent objects along a path to the light source?

Intersecting rays with spheres

Given:

- The coordinates of a point along a ray passing through \mathbf{p} in the direction \mathbf{d} are:

$$
\begin{aligned}
& x=p_{x}+t d_{x} \\
& y=p_{y}+t d_{y} \\
& z=p_{z}+t d_{z}
\end{aligned}
$$

- A unit sphere S centered at the origin defined by the equation:

Find: The t at which the ray intersects S.
Q: What is the normal to the sphere at a point (x, y, z) on the sphere?

Intersecting rays with spheres

Solution by substitution:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-1 & =0 \\
\left(p_{x}+t d_{x}\right)^{2}+\left(p_{y}+t d_{y}\right)^{2}+\left(p_{z}+t d_{z}\right)^{2} & =0 \\
a t^{2}+b t+c & =0
\end{aligned}
$$

where

$$
\begin{aligned}
& a=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \\
& b=2\left(p_{x} d_{x}+p_{y} d_{y}+p_{z} d_{z}\right) \\
& c=d_{x}^{2}+d_{y}^{2}+d_{z}^{2}-1
\end{aligned}
$$

Q: What are the solutions of the quadratic equation in t and what do they mean?

Intersecting with xformed geometry

What if the sphere were transformed by a matrix M (e.g., to make a rotated, translated, ellipsoid)?

Apply M^{-1} to the ray first and intersect in object (local) coordinates!

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?

Epsilons

Due to finite precision arithmetic, we do not always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

Intersecting rays with polyhedra

To intersect a ray with a polyhedron:

- Test intersection of ray with bounding sphere.
- Locate the "front-facing" faces of the polyhedron with
d•N
- Intersect the ray with each front face's supporting plane.
- Use a point-in-polygon test to see if the ray is inside the face.
- Sort intersections according to smallest t.

Ray with cube intersection

To intersect a ray with an axis-aligned cube

- for each pair of parallel planes, compute t intersection values for both. Let $\mathrm{t}_{\text {near }}$ be the smaller, $\mathrm{t}_{\mathrm{far}}$ be the larger
- let $t_{1}=$ largest $t_{\text {near }}, t_{2}=$ smallest $t_{\text {far }}$
- ray intersections cube if:
- intersection point given by:

Acceleration:

Hierarchical bounding volumes
Vanilla ray tracing is really slow!
In practice, some acceleration technique is almost always used.

One approach is to use hierarchical bounding volumes.

Intersect with largest B.V...

...then intersect with children...

..until you reach the leaf nodes - the primitives.

Acceleration: Spatial subdivision

Another approach is spatial subdivision.

Uniform subdivion in 2D

Idea:

- Partition objects spatially.
- Trace ray through voxel array.

Partition can be uniform or adaptive (e.g., octrees).

Summary

What to take home from this lecture:

1. The meanings of all the boldfaced terms.
2. Enough to implement basic recursive ray tracing.
3. How reflection and transmission directions are computed.
4. How ray--object intersection tests are performed.
5. Basic acceleration strategies.
