15. Parametric surfaces

Reading

Required:

• Watt, 2.1.4, 3.4-3.5.

Optional

- Watt, 3.6.
- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations

Explicit z=f(x,y) (a.k.a., a "height field")
what if the curve isn't a function, like a sphere?

- Implicit g(x,y,z) = 0
- Parametric S(u,v)=(x(u,v),y(u,v),z(u,v))
 - For the sphere: $x(u,v) = r \cos 2\pi v \sin \pi u$ $y(u,v) = r \sin 2\pi v \sin \pi u$ $z(u,v) = r \cos \pi u$

As with curves, we'll focus on parametric surfaces.

Surfaces of revolution

Idea: rotate a 2D **profile curve** around an axis.

What kinds of shapes can you model this way?

3

1

2

Constructing surfaces of revolution

Given: A curve *C*(*u*) in the *xy*-plane:

$$C(u) = \begin{bmatrix} c_x(u) \\ c_y(u) \\ 0 \\ 1 \end{bmatrix}$$

Let $R_x(\theta)$ be a rotation about the *x*-axis.

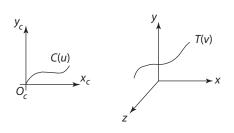
Find: A surface S(u,v) which is C(u) rotated about the *x*-axis.

Solution:

General sweep surfaces

The **surface of revolution** is a special case of a **swept surface**.

Idea: Trace out surface S(u,v) by moving a **profile curve** C(u) along a **trajectory curve** T(v).



More specifically:

- Suppose that C(u) lies in an (x_c, y_c) coordinate system with origin O_c.
- For every point along T(v), lay C(u) so that O_c coincides with T(v).

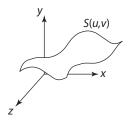
Orientation

The big issue:

• How to orient *C*(*u*) as it moves along *T*(*v*)?

Here are two options:

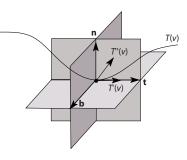
1. **Fixed** (or **static**): Just translate O_c along T(v).



- 2. Moving. Use the **Frenet frame** of T(v).
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve T(v), we want to attach a smoothly varying coordinate system.



To get a 3D coordinate system, we need 3 independent direction vectors.

 $\mathbf{t}(v) = \text{normalize}[T'(v)]$ $\mathbf{b}(v) = \text{normalize}[T'(v) \times T''(v)]$ $\mathbf{n}(v) = \mathbf{b}(v) \times \mathbf{t}(v)$

As we move along T(v), the Frenet frame (t,b,n) varies smoothly.

7

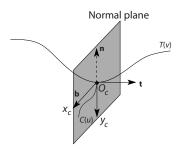
5

6

Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the trajectory T(v):

- Put *C*(*u*) in the **normal plane**.
- Place O_c on T(v).
- Align x_c for C(u) with **b**.
- Align y_c for C(u) with -**n**.



If T(v) is a circle, you get a surface of revolution exactly!

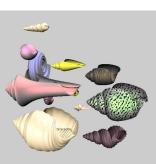
What happens at inflection points, i.e., where curvature goes to zero?

Variations

Several variations are possible:

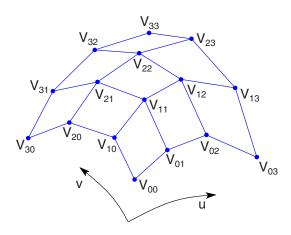
- Scale *C*(*u*) as it moves, possibly using length of *T*(*v*) as a scale factor.
- Morph C(u) into some other curve C̃(u) as it moves along T(v).
- ...

Let's walk through the steps:



10

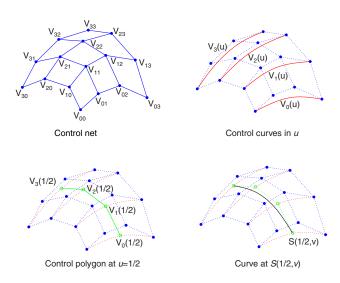
Tensor product Bézier surfaces



Given a grid of control points V_{ij} , forming a **control net**, contruct a surface S(u,v) by:

- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves V₀(u),..., V_n(u).
- treating V₀(u),..., V_n(u) as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.



Which control points are interpolated by the surface?

11

9

Matrix form of Bézier surfaces

Tensor product surfaces can be written out explicitly:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} b_i (u) b_j (v)$$
$$= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} M_{Bézier} \mathbf{V} M_{Bézier}^{T} \begin{bmatrix} v^3 \\ v^2 \\ v \\ 1 \end{bmatrix}$$

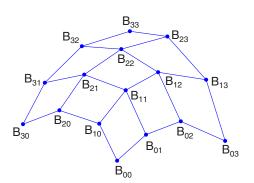
v

1

13

Tensor product B-spline surfaces

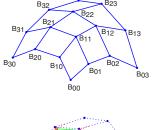
As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

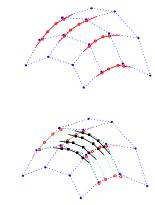


- treat rows of *B* as control points to generate ٠ Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate ٠ Bézier control points in u.

14

Tensor product B-spline surfaces, cont.





Which B-spline control points are interpolated by the surface?

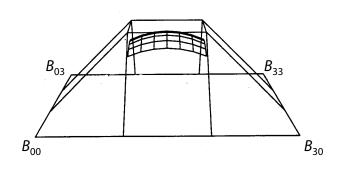
Matrix form of B-spline surfaces

Tensor product B-spline surfaces can be written out explicitly:

$$S(u,v) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} M_{B\acute{e}zier} M_{B-spline} \mathbf{B} M_{B-spline}^T M_{B\acute{e}zier}^T \begin{bmatrix} v^3 \\ v^2 \\ v \\ 1 \end{bmatrix}$$

Tensor product B-splines, cont.

Another example:

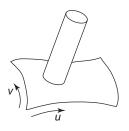


Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:



We can do this by **trimming** the *u*-*v* domain.

- Define a closed curve in the *u-v* domain (a trim curve)
- Do not draw the surface points inside of this curve.

18

It's really hard to maintain continuity in these regions, especially while animating.

17

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
 - with a fixed frame
 - with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline
 surfaces