
ANIMATOR
HELP SESSION

ANIMATOR

OUTLINE

▸ Application interface

▸ Project requirements
▸ Curves: Bezier, B-splines, Catmull-roms

▸ Add viscous drag to Emitter Particle system

▸ Spring Connected Particle system

▸ Cylinder colliders

▸ Artifact tips!

ANIMATOR

GETTING STARTED

▸ Clone the Animator skeleton code
▸ git clone git@gitlab.cs.washington.edu:csep557-19sp-

animator/YOUR_REPO.git animator

▸ Note: if you want to include any extra credit from Modeler, you’ll have to
copy or merge that code over

▸ Note the Animation tab in the bottom window
▸ Left: Keyable properties for the selected object

▸ Right: Graph window

▸ Bottom: Time slider

▸ Interface is represented by AnimationWidget - add extra UI here

ANIMATOR

DEMO

CURVES

CURVES

CURVES

CURVE EVALUATOR

▸ Implement the evaluateCurve function for each curve
▸ ctrl_pts - a sorted collection of control points that the user

specifies in the graph editor

▸ density - how many times to sample between control points

▸ Note that CurveEvaluator is constructed with:
▸ max_x - animation length in seconds

▸ wrap_y - flag for whether to wrap end to beginning (EC)

▸ Use the LinearCurveEvaluator code as an example

CURVES

REQUIRED CURVES

▸ Bezier
▸ Adjacent Bezier curves share endpoints

▸ Catmull-Rom
▸ Interpolate endpoints (double them)

▸ Make sure your curve is a function!!

▸ B-Spline
▸ Interpolate endpoints (triple them)

CURVES

HOW IT WORKS

▸ Control points are sorted for you

▸ Your evaluated control points then  
will also be ordered, so…
▸ They must be a function! x should not decrease.

▸ Evaluation function draws line segments between each of
your evaluated points to create a smooth curve
▸ Use control points to calculate your evaluated points which draw your

curve - should always extend from time 0 to animation_length

▸ How might you calculate evaluated points so your curve wraps?

Bad!

CURVES

BEZIER CURVES

▸ Use the Bernstein polynomials from lecture

▸ Use linear interpolation when there are not  
enough control points (< 4 for a set)

▸ Base requirement: sample u at regular intervals for  
0 <= u <= 1 (use the density parameter)
▸ EC: Adaptive subdivision with de Casteljau’s algorithm (see website)

CURVES

CATMULL-ROM CURVES

▸ C1 continuity

▸ Similar to Bezier, but now you evaluate a transformed set
of points

▸ Use linear interpolation when there are not  
enough control points (< 3 for a set)

▸ Double your endpoints to interpolate!

CURVES

B-SPLINE CURVES

▸ C2 continuity

▸ Another transformation on your set of control points
(called de Boor points)

▸ Use linear interpolation when there are not  
enough control points (< 3 for a set)

▸ Triple your endpoints to interpolate!

PARTICLE SYSTEMS

PARTICLE SYSTEMS

EMITTER PARTICLE SYSTEM

▸ Your first requirement is extending the ParticleSystem class

▸ Run the skeleton to see how it works
▸ Includes constant force (set to gravity as default)

▸ Includes sphere and plane collision

▸ Go to SceneObject -> Create Collider

▸ Uses Euler’s method to update position and velocity

▸ It also includes some extra controls, like changing the
Particle mesh, material, scale, initial velocity, etc.

PARTICLE SYSTEMS

EMITTER PARTICLE SYSTEM - REQUIREMENTS

▸ Add viscous drag (f = -k_drag * velocity)
▸ UI slider is provided

▸ Add support for cylinder collision
▸ CylinderCollider class is already defined, but you have to implement

the effect of this collider against the emitter particles system

▸ Particles should bounce off both endcaps and the curved body, at the
correct normal

▸ Restitution attenuates the normal component of the reflected velocity

▸ The solution does not demonstrate this yet; expect an update in a few
days!

PARTICLE SYSTEMS

NOTE: CALCULATIONS IN WORLD SPACE!

▸ If you spawn your particles from a node in your hierarchy that
isn’t the root, it still behaves correctly

▸ Find the world coordinates for your particles - not local
▸ Why? Ex. If we apply gravity in the local coordinates of your particle

system, then the force in the -y direction is dependent on the orientation of
that node, not the -y of the world

▸ Apply the model view matrix (i.e. model_matrix_) to your position,
velocity, etc. vectors

▸ This is done for you in ParticleSystem, do the same in
ConnectedParticleSystem (your spring system)

PARTICLE SYSTEMS

FIXED PARTICLE SYSTEM

▸ Skeleton outline is provided in the ConnectedParticleSystem class
▸ Fill in the REQUIREMENT sections to properly run and update the simulation

▸ You will need to add member variables and possibly methods to fully implement your
system

▸ What is the difference?
▸ This system has a fixed number of particles with spring forces that interact between the

particles

▸ Most commonly, this is used to create a mesh where the particles act as vertices

▸ Deforming cubes, flexible hair or grass, cloth

▸ glRenderer::Render(SceneObject&, ConnectedParticleSystem) handles
drawing the mesh lines between particles - edit this if you wish to change the rendering

▸ May reuse parts from ParticleSystem.h or use inheritance; you design it

PARTICLE SYSTEMS

FIXED PARTICLE SYSTEM - REQUIREMENTS

▸ Implement spring force using Hooke’s law with damping
▸ See the lecture slides; note that force gets added to both particles

▸ Must also use Euler’s method

▸ EC: More powerful methods like Runge-kutta

▸ Apply an additional force
▸ Constant (gravity), electromagnetic, buoyant, flocking (probably with sets of

connected particles); may earn EC

▸ Implement collision detection (sphere, plane, cylinder)

PARTICLE SYSTEMS

TIPS

▸ Although not required, think about how you may want to extend or
apply these particle systems to your animation later

▸ The sample solution uses springs to implement a deformed cube
▸ Note: it connects every possible pair of vertices; more springs = more stable

▸ Springs, especially stiff ones (or over-damping), get unstable
▸ It can be finicky to find the right values

▸ The sample solution and assets/scene/spring_particle_system.yaml have
examples of constants in systems with gravity and without

▸ Realtime Play mode skips frames, so has unstable Euler integration
(this includes collisions)

BELLS AND WHISTLES

HOW TO MAKE IT COOLER
▸ Curves
▸ Tension control for Catmull Rom

▸ Allow control points to have (or not have) C0, C1, C2 continuity

▸ Curve wrapping (UI provided already)

▸ Particles
▸ Cloth simulation

▸ Flocking

▸ Billboarding (see code comments)
▸ And transparent textures -> Fire, snow, leaves

▸ Baking
▸ Improves performance for complicated simulations with many particles

LIGHTS CAMERA ACTION!
TIPS FOR GOOD
ARTIFACTS

ARTIFACTS

HAVE A PLAN
▸ This artifact takes more time than the others - we give you a week

▸ Keep it simple, have realistic goals. If you finish early, go back and
enhance

▸ Sketch out storyboards and key poses/frames before implementing
▸ Much easier to iterate on paper than in the animator program

▸ Complicated != better. Well animated simple models are more
entertaining than poorly animated complicated models

▸ Read John Lasseter’s article on animation principles!! 
https://courses.cs.washington.edu/courses/cse457/15sp/projects/
animator/linkedItems/lasseter.pdf

https://courses.cs.washington.edu/courses/cse457/15sp/projects/animator/linkedItems/lasseter.pdf
https://courses.cs.washington.edu/courses/cse457/15sp/projects/animator/linkedItems/lasseter.pdf

ARTIFACTS

TIPS FOR YOUR MODELS
▸ You may update or add more models as you like

▸ Many modeler artifacts were not properly “rigged”
▸ Fix this now or else you won’t be able to animate

▸ Ex. body parts have joints. If it bends, use either a sphere node or an empty node.

▸ Translate the child to where you’d like it. Now when you rotate the parent (joint),
your child node pivots correctly

▸ A Blinn-Phong shader with texture mapping can add a lot, and is fairly
easy to implement
▸ Look at the provided texture.frag and texture.vert as reference

▸ Find or make your own textures by using checkers.png as a reference for how the
texture is mapped on your 3D objects (and then use Paint, GIMP, Photoshop, etc.)

▸ Can use transparent textures

ARTIFACTS

CHOICE OF CURVES

▸ Catmull-Rom is usually the preferred curve choice
▸ But unless your project supports the option to add C1 discontinuity at will,

you might find yourself fighting the Catmull-Rom to create pauses and
control the timing

▸ Bezier spline works well for things like animating a bouncing ball

▸ Note on keyframing:
▸ Auto-keyframe is a mode (turned off by  

default) that creates keys whenever a  
transform is changed

▸ Otherwise, skipping the time without  
‘keying’, will erase the transform change!

ARTIFACTS

IMPORTANT COMPOSITIONAL COMPONENTS
▸ Timing

▸ Consider timing and shot planning before getting specific about joint rotations or positions

▸ Total length MUST be < 60sec. We recommend 24 or 30 fps.

▸ SFX + Music
▸ Greatly enhances cohesion of your artifact

▸ If your idea includes a theme or stylization, very effective to time your animation with
events in the theme music

▸ Lighting
▸ Like sound, super important compositionally - can signal story and mood

▸ Camera Angle
▸ Changing perspective between two shots or panning/zooming camera can add depth

▸ Do not go overboard! And remember the 180 degree rule.

ARTIFACTS

PUTTING IT TOGETHER
▸ Make sure you keep your original model .yaml file separate

▸ We recommend breaking up your intended artifact into shorter clips or
“shots” and combining them in the end
▸ Can incrementally complete your artifact

▸ Save a new .yaml file for each shot, and build off the base of your original model (or
from your last shot)

▸ SaveAs often - there are no undos

▸ Your animation is saved in frames, and you must composite
▸ Blender is free, and we provide a tutorial

▸ Adobe After Effects and Premiere can also composite your frames into a movie - and
much more easily too

▸ < 60s, and must be H.264 mp4 format

GOOD LUCK
THE END

