
CSEP 561 – Connections

David Wetherall
djw@cs.washington.edu

C tiConnections

• Focus
– How do we (reliably) connect processes?
– This is the transport layerThis is the transport layer

• Topics Transport
Application

– Naming processes
– Connection setup / teardown
– Sliding window / Flow control Physical

Link
Network

p

g Physical

djw // CSEP 561, Autumn 2010 2

Th T t LThe Transport Layer

• Builds on the services of the Network layer
– “TCP/IP”

• Communication between processes running on hosts
– Naming/Addressing

• Stronger guarantees of message delivery make sense
– Many applications want reliable connection and data transfer
– This is the first layer that is talking “end-to-end”

djw // CSEP 561, Autumn 2010 3

I t t T t P t lInternet Transport Protocols

• UDP
– Datagram abstraction between processes
– With error detectionWith error detection

• TCP
– Bytestream (bitpipe) abstraction between processes
– With reliabilityy
– Plus congestion control (later!)

djw // CSEP 561, Autumn 2010 4

C i f TCP/UDP/IP tiComparison of TCP/UDP/IP properties

UDP
• Datagram oriented
• Lost packets

IP
• Datagram oriented
• Lost packets

TCP
• Connection-oriented
• Reliable byte-stream

• Reordered packets
• Duplicate packets
• Limited size packets

• Reordered packets
• Duplicate packets
• Limited size packets

– In-order delivery
– Single delivery
– Arbitrarily length

• Synchronization• Synchronization
• Flow control
• Congestion control

djw // CSEP 561, Autumn 2010 5

N i P /S iNaming Processes/Services

• Process here is an abstract term for your Web browser
(HTTP), Email servers (SMTP), hostname translation (DNS),
RealAudio player (RTSP), etc.RealAudio player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”
– Identify process uniquely as (IP address, protocol, port)

djw // CSEP 561, Autumn 2010 6

Pi ki P t N bPicking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?
– To what port should you send to contact that Web server?To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) portsClients use OS assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

djw // CSEP 561, Autumn 2010 7

B k l S k tBerkeley Sockets

• Networking protocols implemented in OS
– OS must expose a programming API to applications
– most OSs use the “socket” interfacemost OSs use the socket interface
– originally provided by BSD 4.1c in ~1982.

i i l b i i k• Principle abstraction is a “socket”
– a point at which an application attaches to the network
– defines operations for creating connections, attaching to network, p g , g ,

sending and receiving data, closing connections

djw // CSEP 561, Autumn 2010 8

O ll iOverall pieces

djw // CSEP 561, Autumn 2010 9

B k l S k t APIBerkeley Sockets API

djw // CSEP 561, Autumn 2010 10

TCP (ti i t d)TCP (connection-oriented)
Server

Socket()

Bind()Bind()
Client

Socket()
Listen()

Socket()
Accept()

Connect()Block until
connect

Connection Establishment.

D t (t)
Recv() Send()

Process
request

Data (request)

Data (reply)

djw // CSEP 561, Autumn 2010

Send()
Recv()

Data (reply)

11

UDP (ti l)UDP (connectionless)

ServerServer

Socket()

Bi d()
Client

Bind()
Socket()

Recvfrom()
Bind()Bind()

Sendto()
Block until
Data from
client

Data (request)
client

Process
request

djw // CSEP 561, Autumn 2010

Sendto()
Recvfrom()

Data (reply)

12

U D t P t l (UDP)User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent
– Destination port identifies UDP delivery queue at endpointDestination port identifies UDP delivery queue at endpoint

djw // CSEP 561, Autumn 2010 13

UDP D li

A li ti A li ti A li ti

UDP Delivery

Application
process

Application
process

Application
process

Ports
Kernel

boundary

Messageg
Queues

DeMux

djw // CSEP 561, Autumn 2010
Packets arrive 14

UDP Ch kUDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery
– So it covers data UDP header and IP pseudoheaderSo it covers data, UDP header, and IP pseudoheader

UDP checksum

djw // CSEP 561, Autumn 2010 15

T i i C t l P t l (TCP)Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control (later)
– Prevents sender from over-running receiver buffers

• Congestion control (later)• Congestion control (later)
– Prevents sender from over-running network buffers

djw // CSEP 561, Autumn 2010 16

TCP D liTCP Delivery

Application process Application process

Write
bytes

Read
bytes… …

TCP
Send buffer

TCP
Receive buffer

Segment Segment Segment
Transmit segments

…

djw // CSEP 561, Autumn 2010 17

TCP H d F tTCP Header Format

• Ports plus IP addresses identify a connection

Source Port Destination Port

djw // CSEP 561, Autumn 2010 18

TCP H d F tTCP Header Format

• Sequence, Ack numbers used for the sliding window
– Congestion control works by controlling the window size

Sequence number
Acknowledgement number

Sequence number

djw // CSEP 561, Autumn 2010 19

TCP H d F tTCP Header Format

• Flags bits may be SYN / FIN / RST / ACK, URG, and ECE / CWR

Flags

djw // CSEP 561, Autumn 2010 20

TCP H d F tTCP Header Format

• Advertised window is used for flow control

Window size

djw // CSEP 561, Autumn 2010 21

C ti E t bli h tConnection Establishment

• Both sender and receiver must be ready before we start to
transfer the data
– Sender and receiver need to agree on a set of parametersSender and receiver need to agree on a set of parameters
– e.g., the Maximum Segment Size (MSS)

• This is signaling
– It sets up state at the endpoints
– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

djw // CSEP 561, Autumn 2010 22

Th W H d h kThree-Way Handshake

• Opens both directions for transfer

Active participant
(client)

Passive participant
(server)(client) (server)

djw // CSEP 561, Autumn 2010 23

S C tSome Comments

• We could abbreviate this setup, but it was chosen to be robust,
especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting confused by aminimizes the chance of hosts that crash getting confused by a
previous incarnation of a connection

• With random ISN it proves two hosts can communicate
– Weak form of authentication

djw // CSEP 561, Autumn 2010 24

TCP St t T itiTCP State Transitions

• Wow!

djw // CSEP 561, Autumn 2010 25

A i ith St tAgain, with States

Active participant
(client)

Passive participant
(server)

LISTENSYN SENT LISTEN

SYN_RCVD

_

ESTABLISHED

+data
ESTABLISHED

djw // CSEP 561, Autumn 2010 26

C ti T dConnection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

djw // CSEP 561, Autumn 2010 27

TCP C ti T dTCP Connection Teardown

Web server Web browser

FIN WAIT 1_ _

CLOSE_WAIT

LAST ACKLAST_ACK
FIN_WAIT_2
TIME WAITTIME_WAIT

CLOSEDCLOSED
…

djw // CSEP 561, Autumn 2010

CLOSED

28

Th TIME WAIT St tThe TIME_WAIT State

• We wait 2MSL (two times the maximum segment lifetime of
60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

djw // CSEP 561, Autumn 2010 29

St d W itStop-and-Wait

Sender Receiver

• Only one outstanding
packet at a time

0

1

Sender Receiver

0
packet at a time

• Also called alternating bit

1

0
1

g
protocol

1
1

0

1

djw // CSEP 561, Autumn 2010 30

Slidi Wi dSliding Windows

• Stop-and-wait provides reliable transfer but has lousy
performance if wire time << prop. delayp p p y
– How bad? You do the math

• Want to utilize all available bandwidth
– Need to keep more data “in flight”
– How much? Remember the bandwidth-delay product?

• Leads to Sliding Window Protocol

djw // CSEP 561, Autumn 2010

Leads to Sliding Window Protocol

31

Sliding Window Protocol
• There is some maximum number of un-ACK’ed frames the sender is• There is some maximum number of un-ACK ed frames the sender is

allowed to have in flight
– We call this “the window size”
– Example: window size = 2p

Sender Receiver

im
e

Once the window is
full, each ACK’ed

frame allows the senderTi frame allows the sender
to send one more frame

djw // CSEP 561,
Autumn 201032

Sliding Window: Sender
• Assign sequence number to each frame (SeqNum)g q ()
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)

last frame sent (LFS)– last frame sent (LFS)
• Maintain invariant: LFS - LAR <= SWS

SWSSWS

LAR LFS

… …

• Advance LAR when ACK arrives
• Buffer up to SWS frames

LAR LFS

djw // CSEP 561,
Autumn 201033

Slidi Wi d R iSliding Window: Receiver

• Maintain three state variablesMaintain three state variables
– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received (LFR)

i i i i• Maintain invariant: LFA - LFR <= RWS

 RWS

• Frame SeqNum arrives:
if d ACK

LFR LFA
… …

– if LFR < SeqNum ≤ LFA accept + send ACK
– if SeqNum ≤ LFR or SeqNum > LFA discard

• Send cumulative ACKs – send ACK for largest frame such that all frames less

djw // CSEP 561,
Autumn 2010

g
than this have been received

34

Fl C t lFlow Control

• Sender must transmit data no faster than it can be consumed
by the receiver
– Receiver might be a slow machineReceiver might be a slow machine
– App might consume data slowly

l b dj i h i f h lidi i d d• Implement by adjusting the size of the sliding window used at
the sender based on receiver feedback about available buffer
spacep
– Receiver tells sender the highest sequence number it can use

djw // CSEP 561, Autumn 2010 35

Fl C t l E lFlow Control Example

djw // CSEP 561, Autumn 2010 36

