CSEP 561 — Connections

David Wetherall
djw@cs.washington.edu

Connections

e Focus
— How do we (reliably) connect processes?
— This is the transport layer

| Application
e Topics Transport
— Naming processes Network
— Connection setup / teardown Link
— Sliding window / Flow control Physical

djw // CSEP 561, Autumn 2010

The Transport Layer

« Builds on the services of the Network layer
— “TCP/IP”

e Communication between processes running on hosts
— Naming/Addressing

o Stronger guarantees of message delivery make sense
— Many applications want reliable connection and data transfer
— This is the first layer that is talking “end-to-end”

djw // CSEP 561, Autumn 2010

Internet Transport Protocols

« UDP

— Datagram abstraction between processes
— With error detection

. TCP

— Bytestream (bitpipe) abstraction between processes
— With reliability
— Plus congestion control (later!)

djw // CSEP 561, Autumn 2010

Comparison of TCP/UDP/IP properties

TCP
Connection-oriented

Reliable byte-stream
— In-order delivery
— Single delivery
— Arbitrarily length
Synchronization
Flow control

Congestion control

djw // CSEP 561, Autumn 2010

UDP

« Datagram oriented

» Lost packets

* Reordered packets

* Duplicate packets

» Limited size packets

IP

« Datagram oriented

» Lost packets

* Reordered packets

* Duplicate packets

* Limited size packets

Naming Processes/Services

* Process here Is an abstract term for your Web browser
(HTTP), Emall servers (SMTP), hostname translation (DNS),
Real Audio player (RTSP), etc.

e How do we identify for remote communication?
— Process id or memory address are OS-specific and transient

e So TCP and UDP use Ports

— 16-bit integers representing mailboxes that processes “rent”
— Identify process uniquely as (IP address, protocol, port)

djw // CSEP 561, Autumn 2010

Picking Port Numbers

o We still have the problem of allocating port numbers
— What port should a Web server use on host X?
— To what port should you send to contact that Web server?

« Servers typically bind to “well-known” port numbers
— e.g.,, HTTP 80, SMTP 25, DNS 53, ... look in /etc/services
— Ports below 1024 reserved for “well-known” services

e Clients use OS-assigned temporary (ephemeral) ports
— Above 1024, recycled by OS when client finished

djw // CSEP 561, Autumn 2010

Berkeley Sockets

e Networking protocols implemented in OS
— OS must expose a programming API to applications
— most OSs use the “socket” interface
— originally provided by BSD 4.1c in ~1982.

* Principle abstraction is a “socket”
— apoint at which an application attaches to the network

— defines operations for creating connections, attaching to network,
sending and receiving data, closing connections

djw // CSEP 561, Autumn 2010

Overall pieces

app
stuff write(), sendto(), send() read(), recvfrom(), recv()
Output Input
= T=s
0S - ket are -
StUﬁ Socket file descrniptor Socket file descriptor
d port port
Protocol bt L“ e ——_——— it T‘“‘ zm
StUﬁ " (TOP| dalm | - | (TOP | dalm Metwork Layer " (TCP| delm | - | (TOP| daim
l T
nk | (TGP | del k| TGP | oalm Link Leysr ik | TCP| dels | - Bk | TGP | delm

djw // CSEP 561, Autumn 2010

Berkeley Sockets API

Primitive Meaning
SOCKET Create a new communication end point
BIND Associate a local address with a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Fassively establish an incoming connection
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

djw // CSEP 561, Autumn 2010

10

TCP (connection-oriented)

Server
Socket()
Bind()
Client
Listen()
Socket()
Accept() v
Block until | Connection Establishment. ,| Connect()
connect !
Recv() L Data (request) Send()
Process
request
| Data (reply)

Send() » v
Recv()

djw // CSEP 561, Autumn 2010

UDP (connectionless)

Server
Socket()
Client
Bind()
Socket()
Recvfrom() v
Bind()
Block until v
Data from Data (request) Sendto()
client /
Process
request
Sendto() W v
Recvfrom()

djw // CSEP 561, Autumn 2010

12

User Datagram Protocol (UDP)

* Provides message delivery between processes
— Source port filled in by OS as message is sent

— Destination port identifies UDP delivery queue at endpoint

[

1)

Source port

Destination port

UDP length

UDP checksum

djw // CSEP 561, Autumn 2010

13

UDP Delivery

[Application} { Application] [Application}

process

process

process

A

Message

Queues

djw // CSEP 561, Autumn 2010

Packets arrive

Kernel
boundary

UDP Checksum

« UDP includes optional protection against errors
— Checksum intended as an end-to-end check on delivery
— So it covers data, UDP header, and IP pseudoheader

A

32 Bits

|

Source port

Destination port

UDP length

UDP checksum

djw // CSEP 561, Autumn 2010

15

Transmission Control Protocol (TCP)

Reliable bi-directional bytestream between processes
— Message boundaries are not preserved

Connections
— Conversation between endpoints with beginning and end

Flow control (later)
— Prevents sender from over-running receiver buffers

Congestion control (later)
— Prevents sender from over-running network buffers

djw // CSEP 561, Autumn 2010 16

TCP Delivery

Application process

Application process

] []
[1 Write [] Read
: bytes - bytes

v]

TCP TCP
Send buffer Receive buffer
Transmit segments 1
Segment| | Segment|---| Segment

djw // CSEP 561, Autumn 2010

17

TCP Header Format

o Ports plus IP addresses identify a connection

32 Bits

Source Port

Destination Port

Sequence number

Acknowledgement number

TCP CIElU/A|PIR|S|F
header W CIR|IC|S|S|Y]|I Window size
length RIE|G|K|H| T| NN

Checksum Urgent pointer

Options (0 or more 32-bit words)

e

Data (optional)

el

djw // CSEP 561, Autumn 2010

18

TCP Header Format

e Sequence, Ack numbers used for the sliding window
— Congestion control works by controlling the window size

32 Bits

Source port Destination port

Seqguence number
Acknowledgement number

TCP CIElUIA|PIR|S|F
header WCIR|C|S|S|Y]I Window size
length RIEIG|K|H| T| N[N
Checksum Urgent pointer
L Opti 0 32-bit words) L
T ptions (0 or more 32-bit words) T
+ Data (optional) J‘:

djw // CSEP 561, Autumn 2010 19

TCP Header Format

» Flags bits may be SYN /FIN / RST / ACK, URG, and ECE / CWR

- 32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP
header Flags Window size

length

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

el

e

djw // CSEP 561, Autumn 2010

TCP Header Format

e Advertised window Is used for flow control

32 Bits

Source port Destination port
Sequence number
Acknowledgement number
TCP CIElU|A|P|R|S|F . .
g RIElo k| H| | N[N Window size
Checksum Urgent pointer

Options (0 or more 32-bit words)

e

Data (optional)

el

djw // CSEP 561, Autumn 2010

21

Connection Establishment

« Both sender and receiver must be ready before we start to
transfer the data
— Sender and receiver need to agree on a set of parameters
— e.g., the Maximum Segment Size (MSS)
e This is signaling
— It sets up state at the endpoints
— Compare to “dialing” in the telephone network

e In TCP a Three-Way Handshake Is used

djw // CSEP 561, Autumn 2010

22

Three-Way Handshake

e Opens both directions for transfer

Active participant Passive participant
(client) (server)

%)\‘

=x+ 1)

_ oy ACK=
gYN (SEQ =Y ?

(SE

Q:x+1’ACH:F+1}

- Time

djw // CSEP 561, Autum

Some Comments

* We could abbreviate this setup, but it was chosen to be robust,
especially against delayed duplicates
— Three-way handshake from Tomlinson 1975

* Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting confused by a
previous incarnation of a connection

e With random ISN It proves two hosts can communicate
— Weak form of authentication

djw // CSEP 561, Autumn 2010 24

TCP State Transitions

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
° | CLOSED
Wow! J T T
LISTEN/- CLOSE-
SYNISYMN + ACK
(Step 2 ,/'Of the 3-way handshake) | LISTEN
i 1
.y RST/- J SENDISYN -
RC\":D SYMISYN + ACK (simultaneous open) SENT
E (Data transfer state)
5, ACKI— SYN + ACKIACK _/
""""""""" = ESTABLISHED |=— 53 of the 3-way handshake)
CLOSE/FIM E
CLOSE/FIN I‘l‘ FIN/ACK
4 (Active close) {F'assivé‘w: close)
- 1 |_ T |
I | i I
FIN FINVACK | CL{;JSE |
WAIT 1 ., CLOSING WAIT
I
ACK— ACK— | CLOSEFIN
|
¥
s FIN + ACKJACK
FIN . - TIME Lﬁcﬁg
- |
WAIT 2 FINACK WAIT .
1 [}
- — _ 1 —_
(Timeout/) '
ACKI— ‘
e 0 e = o

djw // CSEP 561, Autumn 2010

(Go back to start)

25

Again, with States

Active participant Passive participant
(client) (server)
SYN_SENT

ESTABLISHED

djw // CSEP 561, Autumn 2010

LISTEN

SYN_RCVD

ESTABLISHED

26

Connection Teardown

o OQOrderly release by sender and receiver when done
— Delivers all pending data and “hangs up”

« Cleans up state in sender and receiver

e TCP provides a “symmetric” close
— both sides shutdown independently

djw // CSEP 561, Autumn 2010

27

TCP Connection Teardown

Web server

FIN. WAIT 1

FIN. WAIT 2
TIME_WAIT |

CLOSED

djw // CSEP 561, Autumn 2010

FIN

e
F\N

ACk

Web browser

CLOSE_WAIT
LAST ACK

CLOSED

28

The TIME_WAIT State

We walit 2ZMSL (two times the maximum segment lifetime of
60 seconds) before completing the close

Why?

ACK might have been lost and so FIN will be resent
Could interfere with a subsequent connection

djw // CSEP 561, Autumn 2010

Stop-and-Wait

Sender Receiver
0
e Only one outstanding 0 —
packet at a time ‘ 1
P 1 —
e Also called alternating bit 0
protocol 0 =
1
1 —

djw // CSEP 561, Autumn 2010

Sliding Windows

[[
» »

o Stop-and-wait provides reliable transfer but has lousy
performance if wire time << prop. delay
— How bad? You do the math

e \Want to utilize all available bandwidth
— Need to keep more data “in flight”
— How much? Remember the bandwidth-delay product?

» Leads to Sliding Window Protocol

djw // CSEP 561, Autumn 2010

31

Sliding Window Protocol

 There is some maximum number of un-ACK’ed frames the sender is
allowed to have in flight

— We call this “the window size”
— Example: window size = 2

Sender Receiver

Once the window is
full, each ACK’ed
frame allows the sender
o send one more frame

Time

djw // CSEP 561,
Autumn 2038

Sliding Window: Sender

« Assign sequence number to each frame (SeqNum)

« Maintain three state variables:
— send window size (SWS)
— last acknowledgment received (LAR)
— last frame sent (LFS)

 Maintain invariant: LFS - LAR <= SWS

<SWS

f f

LAR LFS

 Advance LAR when ACK arrives
o Buffer up to SWS frames

djw // CSEP 561,
Autumn 2036

Sliding Window: Receiver

Maintain three state variables
— receive window size (RWS)
— largest frame acceptable (LFA)
— last frame received (LFR)

 Maintain invariant: LFA - LFR <= RWS

< RWS

! }
LFR LFA

* Frame SeqNum arrives:
— If LFR <SegNum < LFA = accept + send ACK
— If SeqNum < LFR or SegNum > LFA = discard

* Send cumulative ACKS — send ACK for largest frame such that all frames less
than this have been received

djw // CSEP 561,
Autumn 2039

Flow Control

o Sender must transmit data no faster than it can be consumed
by the receiver
— Receiver might be a slow machine
— App might consume data slowly

e Implement by adjusting the size of the sliding window used at
the sender based on receiver feedback about available buffer
space

— Receiver tells sender the highest sequence number it can use

djw // CSEP 561, Autumn 2010 35

Flow Control Example

Application
does a 2K
write

Application

does a 2K -

Write

Senderis

blocked

Sender may

send up o 2K —

djw // CSEP 561, Autumn 2010

[AGK=2048 WIN = 2048]——

—{&TsEaag

Receiver's
buffer

0 4K

Empty

B |

Full

Application

reads 2K

36

