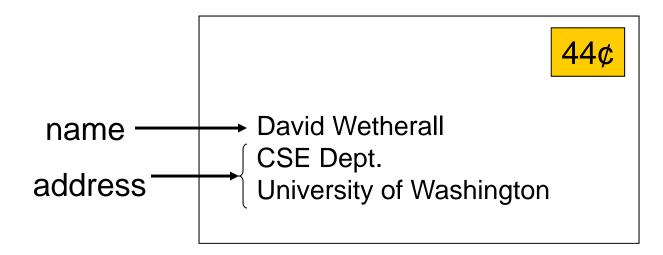

CSE561 – Naming and DNS


David Wetherall djw@cs.washington.edu

Naming and DNS

- Focus:
 - How do we resolve names to addresses
- Names and addresses
- DNS as a system design

Names and Addresses

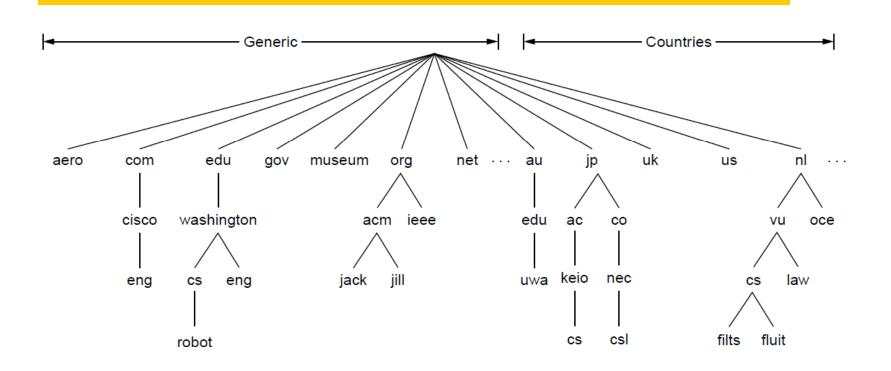
- <u>Names</u> are identifiers for objects/services (high level)
- <u>Addresses</u> are locators for objects/services (low level)
- <u>Resolution</u> is the process of mapping name to address
- But, addresses are really lower-level names; many levels used

Naming in Systems

- Ubiquitous
 - Files in filesystem, processes in OS, pages on the web, ...
- Decouple identifier for object/service from location
 - Hostnames provide a level of indirection for IP addresses
- Key issue is the resolution system
 - Likely to constrain names or addresses to function
 - DNS names are hierarchical, IP addresses constrained by location

Example: Original Hostname System

- When the Internet was really young ...
- Flat namespace
 - Simple (host, address) pairs
- Centralized management
 - Updates via a single master file called HOSTS.TXT
 - Manually coordinated by the Network Information Center (NIC)
- Resolution process
 - Look up hostname in the HOSTS.TXT file

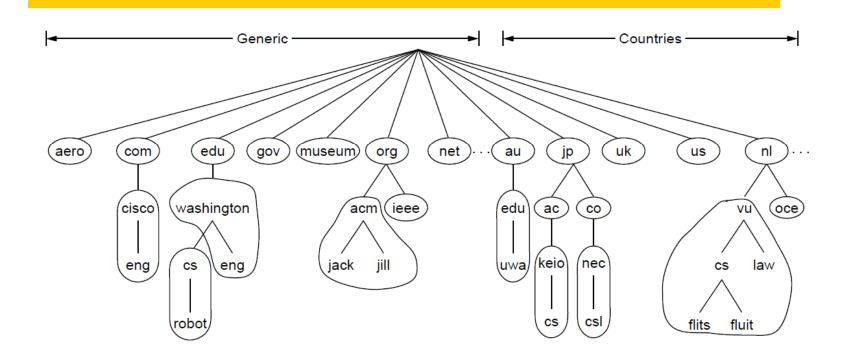

Scaling Problems

- Reliability
 - Single point of failure
- Performance
 - Competition for centralized resources
- Inconsistencies
 - Between update and distribution of new version
- Coordination
 - Between all users to avoid conflicts

Today: Domain Name System (DNS)

- Designed by Mockapetris and Dunlap in the mid 80s
- Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., galah.cs.washington.edu
- Namespace is distributed
 - Decentralized administration and access
 - e.g., galah managed by CSE
- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance

DNS Hierarchy



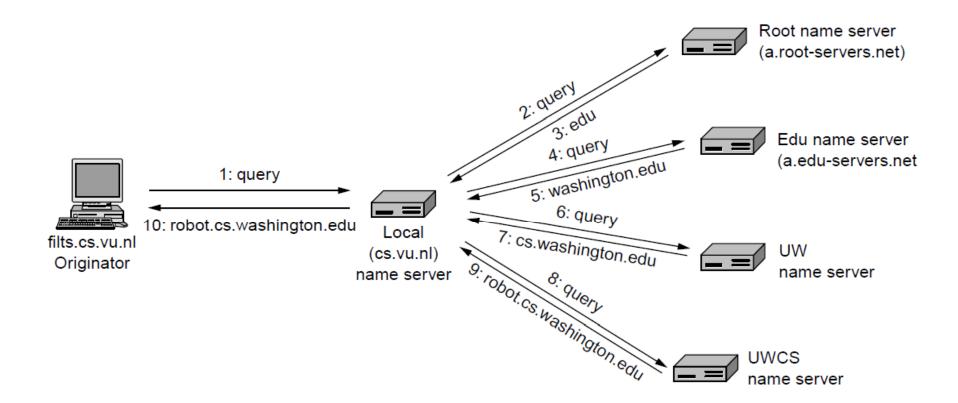
- "dot" is the root, top levels now controlled by ICANN
- Usage governed by conventions

DNS Distribution

- Data managed by <u>zones</u> that contain <u>resource records</u>
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu
- One or more <u>nameservers</u> manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy
- Client <u>resolvers</u> query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)

DNS Zones

• Namespace divided into zones, each of which is maintained by a nameserver


DNS Resource Records

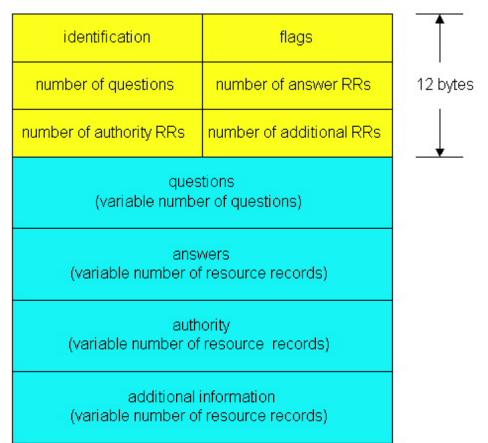
•	Human readable
	description of a zone
	database

• DNS queries return selected resource records

; Authoritative data for cs.vu.nl					
	cs.vu.nl.	86400	IN	SOA	star boss (9527,7200,7200,241920,86400)
	cs.vu.nl.	86400	IN	MX	1 zephyr
	cs.vu.nl.	86400	IN	MX	2 top
	cs.vu.nl.	86400	IN	NS	star
e					
	star	86400	IN	А	130.37.56.205
	zephyr	86400	IN	А	130.37.20.10
	top	86400	IN	Α	130.37.20.11
	WWW	86400	IN	CNAME	star.cs.vu.nl
	ftp	86400	IN	CNAME	zephyr.cs.vu.nl
	flits	86400	IN	А	130.37.16.112
	flits	86400	IN	A	192.31.231.165
	flits	86400	IN	MX	1 flits
	flits	86400	IN	MX	2 zephyr
	flits	86400	IN	MX	3 top
	rowboat		IN	A	130.37.56.201
			IN	MX	1 rowboat
			IN	MX	2 zephyr
	little cictor		INT	•	120.27.02.22
	little-sister		IN	A	130.37.62.23
	locariat		IN	А	192.31.231.216
	laserjet		IIN	A	192.31.231.210

DNS Lookup/Resolution Example

Recursive vs. Iterative Queries


- Recursive query
 - Ask server to get answer for you
 - E.g., request 1 and response 10
- Iterative query
 - Ask server who to ask next
 - E.g., all other request-response pairs
- When would you want recursive vs. iterative?

DNS Messages

Query /Reply messages have the same message format

Message header

- Identification: 16 bit # for query, reply to query uses same #
- Flags:
 - Query or reply
 - Recursion desired
 - Recursion available
 - Reply is authoritative

DNS Bootstrapping

- Need to know IP addresses of root servers before we can make any queries
- Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)

Reliability

- DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas
- UDP used for queries
 - Need reliability: must implement this on top of UDP
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Same identifier for all queries
 - Don't care which server responds

DNS Caching

- Performing all these queries take time
 - And all this before the actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can substantially reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.cnn.com) visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes the cached entry after TTL expires

Negative Caching

- Remember things that don't work
 - Misspellings like <u>www.cnn.comm</u> and <u>www.cnnn.com</u>
 - These can take a long time to fail the first time
 - Good to remember that they don't work
 - ... so the failure takes less time the next time around

Building on the DNS

- Other naming designs leverage the DNS
- Email:
 - e.g., <u>djw@cs.washington.edu</u> is djw in the domain cs.washington.edu
- Uniform Resource Locators (URLs) name for Web pages
 - e.g., <u>www.cs.washington.edu/homes/djw</u>
 - Use domain name to identify a Web server
 - Use "/" separated string to name path to page (like files)

DNS futures

- DNS works great to map hostname to IP!
- What has changed:
 - A static mapping is no longer what many applications want
 - e.g., return "an IP with the content I want"
 - e.g., return "the nearest IP with the content I want"
- This is tied up with CDNs ...