
CSEP 561 – Error detection & correction

David Wetherall
djw@cs.washington.edu

C d f E D t ti /C tiCodes for Error Detection/Correction

• Error detection and correction• Error detection and correction
– How do we detect and correct messages

that are garbled during transmission?

• The responsibility for doing this cuts
across the different layers N t k

Transport
Application

across the different layers
– But we’re mostly thinking about links

Physical
Link

Network

djw // CSEP 561, Autumn 2010

T i l i l t ti f th lTypical implementation of the layers

djw // CSEP 561, Autumn 2010

C d f E D t ti /C tiCodes for Error Detection/Correction

A h D bit f d t i t D+R bit i it l 2D di ti t bit• A scheme maps D bits of data into D+R bits – i.e., it uses only 2D distinct bit
strings of the 2D+R possible.

D message data bits R check bits (systematic)

• The sender computes the check bits based on the data.

• The receiver also computes check bits for the data it receives and compares them
with the check bits it received Mismatches detect errors And mapping to thewith the check bits it received. Mismatches detect errors. And mapping to the
“closest” valid codeword can correct errors.

• Detection/correction schemes are characterized in two ways:
Overhead: ratio of total bits sent to data bits minus 1– Overhead: ratio of total bits sent to data bits, minus 1

• Example: 1000 data bits + 100 code bits = 10% overhead

– The errors they detect/correct
• E g all single bit errors all bursts of fewer than 3 bits etc• E.g., all single-bit errors, all bursts of fewer than 3 bits, etc.

djw // CSEP 561, Autumn 2010

Th H i Di tThe Hamming Distance

• Errors must not turn one valid codeword into another valid
codeword, or we cannot detect/correct them.

• Hamming distance of a code is the smallest number of bit
differences that turn any one codeword into another

d 000 f 0 111 f 1 H i di t i 3– e.g, code 000 for 0, 111 for 1, Hamming distance is 3
• For code with distance d+1:

– d errors can be detected, e.g, 001, 010, 110, 101, 011, g, , , , ,
• For code with distance 2d+1:

– d errors can be corrected, e.g., 001  000

djw // CSEP 561, Autumn 2010

Ch kChecksums

• Used in Internet protocols (IP, ICMP, TCP, UDP)
• Basic Idea: Add up the data and send it along with sum

• Algorithm:
– Mouthful for “sum”: “checksum is the 1s complement of the 1sMouthful for sum : checksum is the 1s complement of the 1s

complement sum of the data interpreted 16 bits at a time” (for 16-bit
TCP/UDP checksum)

– 1s complement nit: flip all bits to make a number negative, so adding s co p e e t t: p a b ts to a e a u be egat ve, so add g
requires carryout to be added back.

• Q: What kind of errors will/won’t checksums detect?• Q: What kind of errors will/won t checksums detect?

djw // CSEP 561, Autumn 2010

I t t h k tiInternet checksum properties

• Catches all error bursts up to 15 bits, most 16 bits
• Random errors detected with prob. 1 – 2^-16

• Fails to catch transpositions, insertion/deletion of zeros
– These are typically hardware/software bugs not random errorsThese are typically hardware/software bugs not random errors

djw // CSEP 561, Autumn 2010

Fl t h b tt h kFletcher – a better checksum

• Includes a “positional component”

• Now sensitive to order of data• Now sensitive to order of data
– slightly more computation, but well worth it

djw // CSEP 561, Autumn 2010

CRC (C li R d d Ch k)CRCs (Cyclic Redundancy Check)

• Stronger protection than checksums
– Used widely in practice, e.g., Ethernet/802.11 CRC-32

• Algorithm: Given n bits of data, generate a k bit check
sequence that gives a combined n + k bits that are divisible by
a chosen divisor C(x)a chosen divisor C(x)

• Based on mathematics of finite fields
“numbers” correspond to polynomials use modulo arithmetic– “numbers” correspond to polynomials, use modulo arithmetic

– e.g, interpret 10011010 as x7 + x4 + x3 + x1

djw // CSEP 561, Autumn 2010

CRC t ti l (f b k)CRC computation example (from book)

• Yuck!

D thi i• Do this in
hardware
with XOR
& shifts

djw // CSEP 561, Autumn 2010

“St d d” CRC 32“Standard” CRC-32

• It is
– CRC-32: 100000100110000010001110110110111
– Used for Ethernet, cable modems, ADSL, PPP, …

• Q: What kind of errors will/won’t checksums detect?
– All 1 and 2 bit errorsAll 1 and 2 bit errors
– All burst errors < 32 bits
– All errors with an odd number of flips
– All based on mathematical properties; look in the bookAll based on mathematical properties; look in the book
– Random errors with prob 1- 2^-32

• Stronger than checks ms• Stronger than checksums

djw // CSEP 561, Autumn 2010

A b tt CRCA better CRC

• Castagnoli,
Koopman
– Via exhaustiveVia exhaustive

search!

djw // CSEP 561, Autumn 2010

R l E D t ti /C ti dReal Error Detection/Correction codes

• Detection (often at link/network/transport layers)
– Parity, simple example
– Checksums, but weak
– CRCs, widely used

• Correction (often at physical and application layers)(p y pp y)
– Hamming codes, simple example
– Convolutional codes
– Reed-Solomon / BCH
– Low-density Parity Check (LDPC) codes  future

• Based on mathematical properties• Based on mathematical properties …

djw // CSEP 561, Autumn 2010

P tt f E M ttPatterns of Errors Matter

• Q: Suppose you expect a bit error rate (BER) of about 1 bit
per 1000 sent. What fraction of packets would be corrupted if
they were 1000 bits long (and you could detect all errors butthey were 1000 bits long (and you could detect all errors but
correct none)?

djw // CSEP 561, Autumn 2010

P tt f EPatterns of Errors

• A: It depends on the pattern of errors
– Bit errors occur at random

• Packet error rate is about 1 – 0 9991000 = 63%Packet error rate is about 1 0.999 63%

– Errors occur in bursts, e.g., 100 consecutive bits every 100K bits
P k t t ≤ 2%• Packet error rate ≤ 2%

djw // CSEP 561, Autumn 2010

R l E M d lReal Error Models

• Random, e.g., thermal noise as in AWGN
• Bursty, e.g., wires, if there is an error it is likely to be a burst

– Common due to physical effects
• Errors can also be “erasures”, e.g., lost packet

• For bursty errors, either want:
– A code that is built to handle them well
– To convert them to random errors (interleaving)

djw // CSEP 561, Autumn 2010

I t l i t t i kInterleaving – a neat trick

• Compute check (parity) bit across items, not per item
– Tolerates burst errors, at the cost of added latency

djw // CSEP 561, Autumn 2010

Retransmissions, or more formally
A t ti R t R t (ARQ)Automatic Repeat Request (ARQ)

S d R i Sender ReceiverSender Receiver

Ti
m

eo
ut

T i
m

e

Sender Receiver

Ti
m

eo
ut

TT

Ti
m

eo
ut

• Packets can be corrupted or lost. How do we add reliability?
• Acknowledgments (ACKs) and retransmissions after a timeout

– Automatically resend until a positive acknowledgement is received

• ARQ is generic name for protocols based on this strategy

djw // CSE/EE 461, Winter 2003 L13.18

T iTwo issues

1. How long to set the timeout?
– Only easy on a direct link, otherwise timing variability
– Way too long lowers performancey g p
– Implies sometimes timeout will be early

2. How to avoid accepting duplicate frames as new
Gi en retransmissions frame loss and imprecise timeo ts– Given retransmissions, frame loss, and imprecise timeouts

djw // CSE/EE 461, Winter 2003 L13.19

Th N d f S N bThe Need for Sequence Numbers

Sender Receiver

eo
ut

Sender Receiver

eo
ut

Ti
m

e
eo

ut

Ti
m

e
Ti

m
eo

ut

New New
frame?

Ti
m

e T

frame? frame?

• In the case of ACK loss (or poor choice of timeout) the
receiver can’t distinguish this message from the next

djw // CSE/EE 461, Winter 2003 L13.20

St d W itStop-and-Wait

Sender Receiver

• Only one outstanding
frame at a time 0 or 1

0

1

Sender Receiver

0
frame at a time, 0 or 1.

• Retransmissions re-sent
with same number

1

0
1

• Number only needs to
distinguish between
current and next frame

1
1

0

current and next frame
– A single bit will do

1

djw // CSE/EE 461, Winter 2003 L13.21

Li it ti f St d W itLimitation of Stop-and-Wait

• Lousy performance if wire time << prop. delay
– How bad? You do the mathHow bad? You do the math

• Want to utilize all available bandwidth
– Need to keep more data “in flight”
– How much? Remember the bandwidth-delay product?

• Leads to Sliding Window Protocol (later)

djw // CSE/EE 461, Winter 2003 L13.22

E C tiError Correction

• Two strategies to correct errors:
– Detect and retransmit, or Automatic Repeat reQuest. (ARQ)
– Error correcting codes or Forward Error Correction (FEC)Error correcting codes, or Forward Error Correction (FEC)

• Question: Which should we choose?

djw // CSEP 561, Autumn 2010

E l 802 11Example: 802.11

• The standard scheme is:

Li k 32 bit CRC f d t i i• Link: 32 bit CRC on frame and retransmission
• PHY header has 16 bit CRC
• PHY: FEC on data via interleaving and a binary convolutional• PHY: FEC on data via interleaving and a binary convolutional

code or LDPC
– rates from ½ to 5/6.

djw // CSEP 561, Autumn 2010

ARQ FECARQ vs. FEC

• Will depend on the kind of errors and cost of recovery
• Example: Message with 1000 bits, Prob(bit error) 0.001

– Case 1: random errorsCase 1: random errors
– Case 2: bursts of 1000 errors

FEC d t l l l t l id l t• FEC used at low-level to lower residual error rate
• ARQ often used at packet level to fix large errors, e.g.,

collision, loss, as well as protect against residual errors
• FEC sometimes used at high level, e.g.:

– Real time applications (no time to retransmit!)
– Nice interaction with broadcast (different receiver errors!)Nice interaction with broadcast (different receiver errors!)

djw // CSEP 561, Autumn 2010

3 M ll d t /b fit3. Maranello and costs/benefits

• Throughput benefit:
– Often this is the precious resource; the primary benefit of the design is

increased throughput (+30% on average)
• Latency benefit:

– Recovery from error is faster

• Computation cost:
– More processing / complexity for all good packets, not just bad
– Consumes more energy, e.g., handhelds, not always desirable

• Message cost:
– Can be longer (NACK plus retransmit), but not likelyCan be longer (NACK plus retransmit), but not likely

djw // CSEP 561, Autumn 2010

2 M ll d th BER2. Maranello and the BER

• The bandwidth advantage of Maranello comes when “most”
blocks in a frame are not errored
– These blocks cost only a 4-byte checksum not a 64-byte resendThese blocks cost only a 4 byte checksum, not a 64 byte resend

• So the pattern of errors matter, not just the average BER.
– 1% BER with random errors  every 64 byte block has errors
– 1% BER in bursts of 10  most blocks are not in error

• Bursty errors are more likely in practice

djw // CSEP 561, Autumn 2010

1 M ll d d l t1. Maranello and deployment

• Some different kinds of compatibility:
– M(aranello) devices on different networks than V(anilla) ones
– Can mix M and V devices on one network but they can’t talkCan mix M and V devices on one network, but they can t talk
– Can freely mix M and V devices on one network
– Maranello supports the latter; highest level of deployability

• Key assumption:
– M devices send valid V messages, including timingg , g g
– But this requires V devices to ignore “new” messages and M devices

to work even if a new message is ignored.
– More generally may negotiate capabilitiesMore generally, may negotiate capabilities

djw // CSEP 561, Autumn 2010

