CSEP561 – Interdomain routing

David Wetherall djw@cs.washington.edu

Interdomain routing

- Focus:
 - Routing across internetworks made up of different parties
- Route scaling
- Route policy
- The protocol: BGP

Two key problems beyond intradomain

- Scale
 - Size of routing tables, computation, messages
 - All grow with the size of the network
- Policy
 - Different parties with different goals make different decisions
 - ISPs are out to make money (locally good paths), not save the world (global shortest path)

Problem: Core BGP Table Growth 1994-2010

• Growth roughly indicates routing/forwarding workload

Problem: Independent decisions

- Early Exit / Hot Potato policy
 "if it's not for you, get rid of it"
- Combination of best local policies is not globally best
 - Shorter paths exist
- Side-effect: route asymmetry

Solutions?

- Scale solution
 - Standard approach of hierarchy / information hiding
 - In the forms of prefixes and ASes
- Policy solution
 - No great solutions here!
 - Let everyone make their own decisions to the extent possible
 - Economic model gives rise to common commercial policies, e.g, transit vs peering

Scaling with IP prefixes

- Route to blocks of addresses called "prefixes"
 - Written as IP prefix "x.x.x./length" for 2^(32-length) addresses
 - Replaces old fixed blocks of lengths 8, 16 and 24
 - Only store one entry for a prefix in the routing table
 - Can't tell from an address which prefix it belongs to, so forwarding uses "longest matching prefix" rule

Subnetting

- Can internally divide a prefix
 - Better manageability and efficient allocation

Aggregation (CIDR, supernetting)

- Can externally combine prefixes
 - Same mechanism, different goal -- smaller routing tables
 - Would reduce table size by up to half if widespread

Scaling with ASes

- Network comprised of many Autonomous Systems (ASes) or domains
- To scale could use hierarchy to separate inter-domain (BGP) and intra-domain (OSPF) routing
- But not really how BGP works!

Scaling OSPF with Areas

- Split large network into "areas"
 - Connected via border routers
 - Backbone area connects to all
- Border routers send a summary of the area routes to other areas
 - Hides internal area detail
- Example of applying hierarchy

BGP

- Interdomain routing protocol of the Internet
- Each AS tells other ASes the paths it is offering
 - Paths are summaries to prefixes via the sequence of ASes
 - No detailed paths of cost metrics to particular IPs
 - This happens at each border router of the AS
- Each AS picks the paths it wants to use to send traffic
 - Default rule: prefer shortest AS path, then shortest internal path
 - But selection heavily customized by ISPs
 - This happens at each border router of the AS

BGP

Policies

- Each ISP decides which routes to advertise, which to use
 Choice of routes may depend on owner, cost, AUP, ...
- Example: providers sell <u>Transit</u> to their customers
 - Customer announces their prefixes to provider for the rest of the Internet to reach them; Provider announces all other prefixes to customer for them to reach the rest of the Internet
- Example: parties <u>Peer</u> for mutual benefit
 - Peers announce path to their customer's prefixes to each other but do not propagate announcements further

Policies

• Q: What routing do A, B, and C need to do?