CSEP 561 – Retransmissions

David Wetherall djw@cs.washington.edu

djw // CSEP 561, Autumn 2010

Retransmissions

- Focus
 - How do we decide when to retransmit?
- Topics
 - RTT estimation
 - Karn/Partridge algorithm
 - Jacobson/Karels algorithm

Deciding When to Retransmit

- How do you know when a packet has been lost?
 - Ultimately sender uses timers to decide when to retransmit
- But how long should the timer be?
 - Too long: inefficient (large delays, poor use of bandwidth)
 - Too short: may retransmit unnecessarily (causing extra traffic)
 - A good retransmission timer is important for good performance
- Right timer is based on the round trip time (RTT)
 - Easy for LANs, varies greatly for wide area (path length, queuing)

Effects of Early Retransmissions

Congestion Collapse

- In the limit, early retransmissions lead to <u>congestion collapse</u>
 - Sending more packets into the network when it is overloaded exacerbates the problem of congestion
 - Network stays busy but very little useful work is being done
- This happened in real life ~1987
 - Led to Van Jacobson's TCP algorithms, which form the basis of congestion control in the Internet today

[See "Congestion Avoidance and Control", SIGCOMM'88]

Congestion Collapse

• Retransmissions lead to throughput, but not goodput

Estimating RTTs

- Idea: Adapt based on recent past measurements
- Simple algorithm:
 - For each packet, note time sent and time ack received
 - Compute RTT samples and average recent samples for timeout
 - EstimatedRTT = α x EstimatedRTT + (1 α) x SampleRTT
 - This is an exponentially-weighted moving average (low pass filter) that smoothes the samples. Typically, $\alpha = 0.8$ to 0.9.
 - Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don't measure RTT for retransmitted packets and do not relax backed-off timeout until valid RTT measurements

Jacobson/Karels Algorithm

- Problem:
 - Variance in RTTs gets large as network gets loaded
 - So an average RTT isn't a good predictor when we need it most
- Solution: Track variance too.
 - Difference = SampleRTT EstimatedRTT
 - EstimatedRTT = EstimatedRTT + (δ x Difference)
 - Deviation = Deviation + δ (|Difference|- Deviation)
 - Timeout = μ x EstimatedRTT + ϕ x Deviation
 - In practice, $\delta = 1/8$, $\mu = 1$ and $\phi = 4$

Estimate with Mean + Variance

