
Tadayoshi Kohno

CSE P 564 / 590 (Autumn 2012)

Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Cryptography and Security

• Art and science of protecting our information.

• Keeping it private, if we want privacy

• Protecting its integrity, if we want to avoid
forgeries.

Images from Wikipedia and Barnes and Noble

Some thoughts about cryptography
 Cryptography only one small piece of a larger system
 Must protect entire system

• Physical security
• Operating system security
• Network security
• Users
• Cryptography (following slides)

 “Security only as strong as the weakest link”
• Need to secure weak links
• But not always clear what the weakest link is (different

adversaries and resources, different adversarial goals)
• Crypto failures may not be (immediately) detected

 Cryptography helps after you’ve identified your threat
model and goals

 RFIDs in car keys:
• RFIDs in car keys make it harder to hotwire a car
• Result: Car jackings increased

Improved security, increased risk

Key Entry Pad (4-digit PIN)

• This is the key pad on my
office safe.

• Inside my safe is a copy of
final exam.

• How long would it take a
you to break in?

Image from profmason.com

✦ Answer (combinatorics):
✦ 104 tries maximum.
✦ 104 / 2 tries on average.

✦ Answer (unit conversion):
✦ 3 seconds per try --> 4

hours and 10 minutes on
average

Key Entry Pad (4-digit PIN)
• Now assume the safe

automatically calls police
after 3 failed attempts.

• What is the probability that
you will guess the PIN
within 3 tries?

• (Assume no repeat tries.)

Image from profmason.com

✦ Answer (combinatorics):
✦ 10000 choose 3 possible

choices for the 3 guesses
✦ 1 × (9999 choose 2)

possible choices contain
the correct PIN

✦ So success probability is 3 /
10000

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical
combinatorics):
✦ Put different chemical on

each key (NaCl, KCl,
LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical
combinatorics):
✦ Put different chemical on

each key (NaCl, KCl,
LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns
after I access safe

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical
combinatorics):
✦ Put different chemical on

each key (NaCl, KCl,
LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns
after I access safe

Key Entry Pad (4-digit PIN)

• Could you do better at
guessing the PIN?

Image from profmason.com

✦ Answer (chemical
combinatorics):
✦ Put different chemical on

each key (NaCl, KCl,
LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns
after I access safe

Lesson: Consider the complete
system, physical security, etc

Lesson: Think outside the box

Thermal Patterns

Images from http://lcamtuf.coredump.cx/tsafe/

Common Communication
Security Goals

Alice

Privacy of data
Prevent exposure of
information

Integrity of data
Prevent modification of
information

Bob

Adversary

pa
ssw

d =
 fo

ob
ar

; tr
an

sfe
r $

10
0

$1
00

,00
0

Alice
Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Symmetric Setting
Both communicating parties have access to a shared

random string K, called the key.

Adversary

pkB

pkA
Alice

Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Asymmetric Setting
Each party creates a public key pk and a secret key sk.

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary

.Message M
.Ciphertext C

Achieving Privacy (Symmetric)

Achieving Privacy (Asymmetric)

Alice
Bob

M C
Encrypt

pkB

Decrypt

skB

M

Encryption schemes: A tool for protecting privacy.

Adversary

.Message M
.Ciphertext C

pkA,skA pkB,skB

pkB

pkA

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for
protecting integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

.Message M
. Tag T

Achieving Integrity (Asymmetric)

M

Alice
Bob

valid/
invalidT

Sign
(M,T)

Verify

Digital signature schemes: A tool for protecting
integrity and authenticity.

Adversary

.Message M
. . . . Tag / Signature T

pkA,skA pkB,skB

pkB

pkA

skA pkA

Alice

PRNG

“Random” Numbers
Pseudorandom Number Generators (PRNGs)

R1, R2, R3, R4, R5, ...

Machine State
User Input

... Adversary

Alice

PBKDF

Getting keys: PBKDF
Password-based Key Derivation Functions

Password K

(Key check value)

Adversary

pkB, sign(skCA,B,pkB)

Alice
Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Getting keys: CAs
Each party creates a public key pk and a secret key sk.

(Public keys signed by a trusted third party: a certificate
authority.)

pkA, sign(skCA, A, pkA)

Getting keys: Key exchange
Key exchange protocols: A tool for establishing a

shared symmetric key from public keys

Adversary

pkB

pkA
Alice

Bob

K.E.
K

K.E.
K

pkB,skA pkA,skB

pkA,skA pkB,skB

One-way Communications

Message encrypted under Bob’s public key

PGP is a good example

Interactive Communications

Let’s talk securely; here are the algorithms I
understand

I choose these algorithms; start key exchange

Continue key exchange

In many cases, it’s probably a good idea to just use
a standard protocol/system like SSH, SSL/TLS, etc...

Communicate using exchanged key

Let’s Dive a Bit Deeper

One-way Communications

6. Send D, C, T

(Informal example; ignoring, e.g., signatures)
1. Alice gets Bob’s public key; Alice verifies Bob’s public key (e.g., via CA)

2. Alice generates random symmetric keys K1 and K2

3. Alice encrypts the message M the key K1; call result C
4. Alice authenticates (MACs) C with key K2; call the result T

5. Alice encrypts K1 and K2 with Bob’s public key; call the result D

(Assume Bob’s private key is encrypted on Bob’s disk.)

7. Bob takes his password to derive key K3

8. Bob decrypts his private key with key K3

9. Bob uses private key to decrypt K1 and K2

10. Bob uses K2 to verify MAC tag T

11. Bob uses K1 to decrypt C

Interactive Communications
1. Alice and Bob exchange public keys and certificates

3. Alice and Bob take their passwords and derive symmetric keys
4. Alice and Bob use those symmetric keys to decrypt
and recover their asymmetric private keys.
5. Alice and Bob use their asymmetric private keys and a
key exchange algorithm to derive a shared symmetric key

(They key exchange process will require Alice and
Bob to generate new pseudorandom numbers)

6. Alice and Bob use shared symmetric key to encrypt
and authenticate messages

2. Alice and Bob use CA’s public keys to verify certificates and each
other’s public keys

(Informal example; details omitted)

(Last step will probably also use random numbers; will need
to rekey regularly; may need to avoid replay attacks,...)

What cryptosystems
have you heard of?
(Past or present)

History

Substitution Ciphers
• Caesar Cipher

Transposition Ciphers
Codebooks
Machines

Recommended Reading: The Codebreakers by
David Kahn and The Code Book by Simon Singh.
• Military uses
• Rumrunners
•

Classic Encryption

• Goal: To communicate a secret message

• Start with an algorithm

• Caesar cipher (substitution cipher):

	

 	

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 GHIJKLMNOPQRSTUVWXYZABCDEF

Then add a secret key

• Both parties know that the secret word is
“victory”:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 VICTORYABDEFGHJKLMNPQSUWXZ

• “state of the art” for thousands of years

Kerckhoff’s Principle

 Security of a cryptographic object should depend
only on the secrecy of the secret (private) key

 Security should not depend on the secrecy of the
algorithm itself.

Mid-way Summary
• Symmetric cryptography
• Both sides know shared key, no one else knows

anything. Can encrypt, decrypt, sign/MAC,
verify
• Computationally lightweight
• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Everyone has a public key that everyone else knows;

and a paired secret key that is private
• Public key can encrypt; only secret key can decrypt
• Secret key can sign/MAC, public key can verify
• Computationally expensive
• Challenge: How do you validate a public key?

Mid-way Summary

•Where are public keys from?
• One solution: keys for Certificate

Authorities a priori known by browser, OS,
etc.

•Where are shared keys from?
• In person exchange, snail mail, etc.
• If we have verifiable public/private keys:

key exchange protocol generates a shared
key for symmetric cryptography

How cryptosystems work today
 Layered approach:

• Cryptographic primitives, like block ciphers, stream ciphers,
hash functions, and one-way trapdoor permutations

• Cryptographic protocols, like CBC mode encryption, CTR mode
encryption, HMAC message authentication

 Public algorithms (Kerckhoff’s Principle)
 Security proofs based on assumptions (not this course)

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.

“Old Days” Cryptanalysis and
Probabilities

From http://en.wikipedia.org/wiki/Letter_frequencies

Attack Scenarios for Encryption

Ciphertext-Only
Known Plaintext
Chosen Plaintext
Chosen Ciphertext (and Chosen Plaintext)

(General advice: Target strongest level of privacy
possible -- even if not clear why -- for extra
“safety”)

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

key

key

Attack Scenarios for Integrity

What do you think these scenarios should be?

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0
0

Disadvantages
Disadvantage #3: Keys cannot be reused

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

• Generate a random bitmap

• Encode 0 as:

• Encode 1 as:

Visual Cryptography

• Take a black and white bitmap image

• For a white pixel, send the same as the mask

• For a black pixel, send the opposite of the mask

Visual Cryptography

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

• http://www.cl.cam.ac.uk/~fms27/vck/face.gif

Visual Cryptography

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

Background: Permutation

0
1
2

3

0
1
2

3
For N-bit input, 2N! possible permutations
 Idea for how to use a keyed permutation: split

plaintext into blocks; for each block use secret key
to pick a permutation
• Without the key, permutation should “look random”

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Each key defines a different permutation
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

Result should look like a random permutation on the
inputs
• Recall: not just shuffling bits. N-bit block cipher

permutes over 2N inputs.

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES
Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• Theoretical support: After 3 random rounds, ciphertext
indistinguishable from a random permutation if internal F
function is a pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999: EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext

is larger than 128-bit block size

What should we do?

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

Electronic Code Book (ECB) Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

K K K K K

Cipher Block Chaining (CBC) Mode:
Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕
K K K K

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

⊕Initialization
vector ⊕ ⊕ ⊕

K K K K

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

⊕ ⊕ ⊕ ⊕

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,
 totalSize, DESKEY, NULL, DES_ENCRYPT)

K K K K

CBC and Electronic Voting

Counter (CTR) Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Still does not guarantee integrity
 Fragile if ctr repeats

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

K K K K

ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

K K K K

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary

.Message M
.Ciphertext C

Achieving Privacy (Symmetric)

When Is an Encryption Scheme
“Secure”?

Hard to recover the key?
• What if attacker can learn plaintext without learning the

key?
Hard to recover plaintext from ciphertext?

• What if attacker learns some bits or some function of
bits?

Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and infers

that the corresponding plaintexts are identical?
• Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?
Assume that the attacker knows the encryption

algorithm and wants to learn information about
some ciphertext

Main question: what else does attacker know?
• Depends on the application in which cipher is used!

Ciphertext-only attack
Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs
Chosen-plaintext attack (even stronger)

• Can obtain ciphertext for any plaintext of his choice
Chosen-ciphertext attack (very strong)

• Can decrypt any ciphertext except the target
• Sometimes very realistic model

Defining Security (Not Required)
Attacker does not know the key
He chooses as many plaintexts as he wants, and

learns the corresponding ciphertexts
When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

He receives either a ciphertext of M0, or a ciphertext
of M1

He wins if he guesses correctly which one it is

Defining Security (Not Required)

 Idea: attacker should not be able to learn
 even a single bit of the encrypted plaintext
Define Enc(M0,M1,b) to be a function that returns

encrypted Mb

• Given two plaintexts, Enc returns a ciphertext of one or
the other depending on the value of bit b

• Think of Enc as a magic box that computes ciphertexts
on attacker’s demand. He can obtain a ciphertext of any
plaintext M by submitting M0=M1=M, or he can try to
learn even more by submitting M0≠M1.

Attacker’s goal is to learn just one bit b

0 or 1

Chosen-Plaintext Security
(Not Required)
Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
 and outputs bit d and outputs bit d

• Identical except for the value of the secret bit

• d is attacker’s guess of the secret bit
Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |
Encryption scheme is chosen-plaintext secure if this

advantage is negligible for any efficient A

If A “knows” secret bit, he
should be able to make his
output depend on it

“Simple” Example
(Not Required)
Any deterministic, stateless symmetric encryption

scheme is insecure
• Attacker can easily distinguish encryptions of different

plaintexts from encryptions of identical plaintexts
• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts
 C1 ← Enc(X,Y,b); C2 ← Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

Why Hide Everything?
Leaking even a little bit of information about the

plaintext can be disastrous
Electronic voting

• 2 candidates on the ballot (1 bit to encode the vote)
• If ciphertext leaks the parity bit of the encrypted

plaintext, eavesdropper learns the entire vote
Also, want a strong definition, that implies other

definitions (like not being able to obtain key)

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for
protecting integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

.Message M
. Tag T

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕K K K K

CBC-MAC

 Not secure when system may MAC messages of different
lengths.
• NIST recommends a derivative called CMAC (not required)

TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

⊕ ⊕ ⊕ ⊕K K K K

Birthday attacks

Are there two people in the first 1/3 of this
classroom that have the same birthday?
• Yes?
• No?

Birthday attacks
Why is this important for cryptography?

• 365 days in a year (366 some years)
– Pick one person. To find another person with same birthday

would take on the order of 365/2 = 182.5 people
– Expect “collision” -- two people with same birthday -- with a

room of only 23 people
– For simplicity, approximate when we expect a collision as the

square root of 365.

• 2128 different 128-bit keys
– Pick one key at random. To exhaustively search for this key

requires trying on average 2127 keys.
– Expect a “collision” after selecting approximately 264 random

keys.
– 64 bits of security against collision attacks, not 128 bits.

Broad Class of Hash Functions

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’
y

hash function H

 H is a lossy compression function
• Collisions: h(x)=h(x’) for distinct inputs x, x’
• Result of hashing should “look random” (make this precise later)

– Intuition: half of digest bits are “1”; any bit in digest is “1” half the time

 Cryptographic hash function needs a few properties…

message
“digest”

message

One-Way

 Intuition: hash should be hard to invert
• “Preimage resistance”
• Let h(x’)=y∈{0,1}n for a random x’
• Given y, it should be hard to find any x such that

h(x)=y
How hard?

• Brute-force: try every possible x, see if h(x)=y
• SHA-1 (common hash function) has 160-bit output

– Expect to try 2159 inputs before finding one that hashes to y.

Collision Resistance
Should be hard to find distinct x, x’ such that

h(x)=h(x’)
• Brute-force collision search is only O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

Birthday paradox (informal)
• Let t be the number of values x,x’,x’’… we need to look at

before finding the first pair x,x’ s.t. h(x)=h(x’)
• What is probability of collision for each pair x,x’?
• How many pairs would we need to look at before finding

the first collision?
• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

2n/2

Choose(t,2)=t(t-1)/2 ∼ O(t2)

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

– h is one-way (to invert h, must invert g)
– Collisions for h are easy to find: for any x, h(x0)=h(x1)

Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise

– Collisions for h are hard to find: if y starts with 0, then there are
no collisions, if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are
easy to invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

Given randomly chosen x, hard to find x’ such
that h(x)=h(x’)
• Attacker must find collision for a specific x. By

contrast, to break collision resistance it is enough to
find any collision.

• Brute-force attack requires O(2n) time
• AKA second-preimage collision resistance

Weak collision resistance does not imply collision
resistance

Which Property Do We Need?

 UNIX passwords stored as hash(password)
• Weak collision resistance: hard to recover the/a valid password

 Integrity of software distribution
• Weak collision resistance (second-preimage resistance)
• But software images are not really random…
• Collision resistance if considering malicious developers

 Auction bidding
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean

that she needs to hash some randomness with B too)
• Collision resistance: Alice should not be able to change her mind

to bid B’ such that H(B)=H(B’)

Common Hash Functions
MD5

• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

RIPEMD-160
• 160-bit variant of MD5

SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95
• Also recently broken! (Theoretically -- not practical.)

SHA-256, SHA-512, SHA-224, SHA-384
SHA-3: Just picked -- not an official standard yet

Basic Structure of SHA-1 (Not
Required)

Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

How Strong Is SHA-1?

Every bit of output depends on every bit of input
• Very important property for collision-resistance

Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

Some weaknesses, e.g., collisions can be found in
263 ops (2005)

International Criminal Tribunal for
Rwanda (Example Application)
http://www.nytimes.com/2009/01/27/science/

27arch.html?_r=1&ref=science

Credits: Alexei Czeskis, Karl Koscher, Batya Friedman

HMAC

Construct MAC by applying a cryptographic hash
function to message and key

 Invented by Bellare, Canetti, and Krawczyk (1996)
Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

Recall: Often desire both privacy and integrity. (For SSH,
SSL, IPsec, etc.)

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Return M if
valid

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

If Ti = Tj then Mi = Mj

	

 Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

Results of [BN00,Kra01]

Strong (CTXT)

Strong (CCA) Weak (CPA) InsecurePrivacy

Integrity Weak (PTXT) Weak (PTXT)

MAC-then-EncryptEncrypt-then-MAC Encrypt-and-MAC

M MACKm

TM

EncryptKe

C
Ciphertext C

M

EncryptKe MACKm

TC’
Ciphertext C

EncryptKe

M

MACKmC’

TC’
Ciphertext C

(Reminder:) Symmetric Cryptography

 1 secret key, shared between sender/receiver
 Repeat fast and simple operations lots of times

(rounds) to mix up key and ciphertext
Why do we think it is secure? (simplistic)

• Lots of heuristic arguments
– If we do lots and lots and lots of mixing, no

simple formula (and reversible) describing the
whole process (cryptographic weakness).

– Mix in ways we think it’s hard to short-circuit all
the rounds. Especially non-linear mixing, e.g., S-
boxes.

• Some math gives us confidence in these assumptions

Public Key Cryptography

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Public-Key Cryptography

 Everyone has 1 private key and 1 public key
• One for each security goal
• Or 2 private and 2 public, when considering

both encryption and authentication
Mathematical relationship between private and

public keys
Why do we think it is secure? (simplistic)

• Relies entirely on problems we believe are
“hard”

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

http://www.wolframalpha.com/ and http://www.google.com

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman
Assuming DDH problem is hard, Diffie-Hellman

protocol is a secure key establishment protocol against
passive attackers
• Eavesdropper can’t tell the difference between established

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

Properties of Diffie-Hellman
DDH: not true for integers mod p, but true for other

groups
 DL problem in p can be broken down into DL problems for

subgroups, if factorization of p-1 is known.
 Common recommendation:
• Choose p = 2q+1 where q is also a large prime.
• Pick a g that generates a subgroup of order q in Zp*
–DDH is hard for this group
– (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for
the subgroup of order q
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy mod p) Compute k=H((gx)y)=H(gxy mod p)

Requirements for Public-Key Encryption

Key generation: computationally easy to generate a
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK
Encryption: given plaintext M and public key PK,

easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number
of integers in the [1,n] interval that are relatively
prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1
Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

 Zn*: multiplicative group of integers mod n (integers
relatively prime to n)

Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n); private key = (d,n)

Encryption of m: c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c: cd mod n = (me)d mod n = m

Why RSA Decryption Works (Simplified)
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn* (not all of Zn)
 cd mod n = (me)d mod n
 = m1+k(p-1)(q-1) mod n
 = (m mod n) * (mk(p-1)(q-1) mod n)
 Recall: Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n
 cd mod n = (m mod n) * (1 mod n)
 = m mod n
 But: True for all m in Zn, not just m in Zn*

Why RSA Decryption Works (skip)
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n,
 med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*

Why Is RSA Secure?

 RSA problem: given n=pq, e such that
 gcd(e,(p-1)(q-1))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by taking
eth root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find primes
p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy (because
knowing factors means you can compute d), but there is
no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n -- but if it

is, we don’t know how

On RSA encryption

Encrypted message needs to be in interpreted as
an integer less than n
• Reason: Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.

But still not quite that simple

Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube

root of c to recover m (i.e., no operations taken module
n)
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy! Need to pre-
process input in some way.

Sample Encryption

 26 2 15 13 7 14 13 13 1 28 14 15 13 14
20 9 6 31 25 26 14 16 23 15 26 2 6 13 1

 P=3, Q=11, N=33, E=7, D=3
 ‘A’ converted to 1 before encryption; ‘B’ Converted to

2 before encryption; ...

A-1 B-2 C-3 D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11 L-12
M-13 N-14 O-15 P-16 Q-17 R-18 S-19 T-20 U-21 V-22
W-23 X-24 Y-25 Z-26

 http://www.wolframalpha.com/ or http://
www.google.com

Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

r⊕H(M⊕G(r))

M⊕G(r)

Summary of RSA

• Defined RSA primitives

• Encryption and Decryption

• Underlying number theory

• Practical concerns, some mis-uses

• OAEP

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

RSA Signatures
Public key is (n,e), private key is d
To sign message m: s = md mod n

• Signing and decryption are the same underlying operation
in RSA

• It’s infeasible to compute s on m if you don’t know d
To verify signature s on message m:
 se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify

signatures produced with d (private key)
 In practice, also need padding & hashing

• Standard padding/hashing schemes exist for RSA signatures

Encryption and Signatures

Often people think: Encryption and decryption are
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods
• And there are many other signing methods

Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract
x (private key) from gx mod p (public key)

DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M

DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q mod
p) mod q

Public key

If they match, signature is valid

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• Fewer “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

Note: Optimizing Exponentiation

 How to compute Mx mod N? Say x=13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M2+1)2 = M4+2

• y = y2 * M mod N // y = (M4+2)2 *M = M8+4+1

 Does anyone see a potential issue?

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1,
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1

Timing attacks
 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has

distribution with “small” variance (due to time for final
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has
distribution with “large” variance (due to time for final
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really

small, ...)

 Strategy: Force user to sign large number of messages
M1, M2, Record timings for signing.

 Iteratively learn bits of key by using above property.

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

Public announcement or public directory
• Risks: forgery and tampering

Public-key certificate
• Signed statement specifying the key and identity

– sigCA(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves his

identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Hierarchical Approach

Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures
Root authority signs certificates for lower-level

authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“AnotherCA”, PKAnotherCA), sigAnotherCA(“Alice”, PKA)

• What happens if root authority is ever compromised?

Many Challenges

Many Challenges
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/

Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid
Trust can be transitive

• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)
sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s private key has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit
card numbers

• Can issue a “delta CRL” containing only updates

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

Convergence

