Physical Modeling Synthesis of Sound

Adapted from Perry R. Cook Princeton Computer Science (also Music)

prc@cs.princeton.edu www.cs.princeton.edu/~prc

Page 1

One View of Sound

Sound is a waveform,
we can record it, store it,
and play it back accurately

PCM playback is all we need for interactions, movies, games, etc.

But, take one visual analogy:

"If I take lots of polaroid images, I can flip through them real fast and make any image sequence"

Interaction? We manipulate lots of PCM

Page 2

Views of Sound

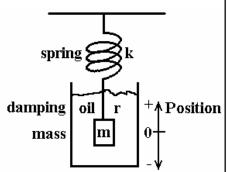
- Time Domain x(t)
 (from physics, and time's arrow)
- Frequency Domain X(f)
 (from math, and perception)
- Production what caused it
- Perception our "image" of it

Page 3

Views of Sound

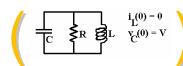
- The Time Domain is most closely related to Production
- The Frequency Domain is most closely related to Perception

Views of Sound: Time Domain


Sound is produced/modeled by physics, described by quantities of

- Force force = mass * acceleration
- Position x(t) actually [x(t), y(t), z(t)]
- Velocity Rate of change of position dx/dt
- Acceleration Rate of change of velocity dv/dt (2nd derivative of position) d^2x/dt^2

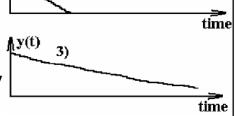
Examples: Mass, Spring, Damper Wave Equation


Page 5

Mass/Spring/Damper

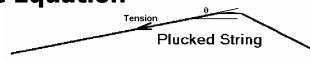
Solution:

$$\frac{d^2y}{dt^2} + \frac{r}{m}\frac{dy}{dt} + \frac{k}{m}y = 0$$


Page 6

2nd Order Linear Diff Eq. Solution

- 1) Underdamped: $y(t) = Y_0 e^{-t/\tau} \cos(\omega t)$ exp. * oscillation
- time


2)

- 2) Critically damped: fast exponential decay
- 3) Overdamped: slow exponential decay

Page 7

$$df_v = (T \sin\theta)_{x+dx} - (T \sin\theta)_x$$

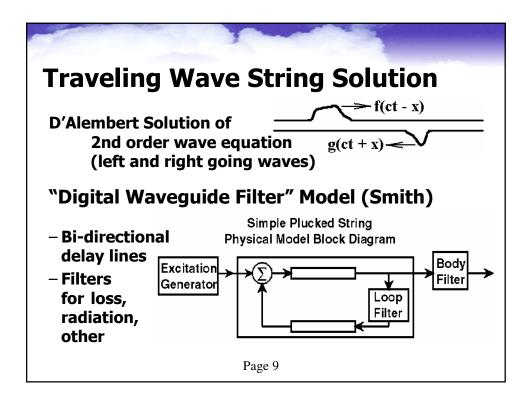
(for each dx of string)

$$f(x+dx) = f(x) + \delta f/\delta x dx + ...$$

(Taylor's series in space)

assume $\sin \theta = \theta$ (for small θ)

$$F = ma = \rho dx d^2y/dt^2$$


 $(\rho = mass/length)$

Solution:

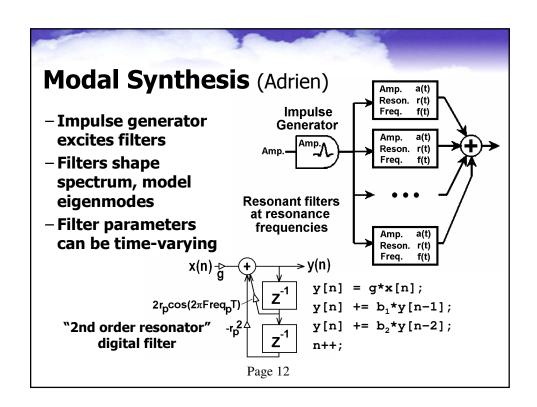
The wave equation $(c^2 = T/\rho)$

$$\frac{d^2y}{dx^2} = \frac{1}{c^2} \frac{d^2y}{dt^2}$$

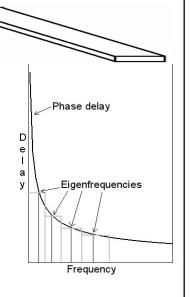
Page 8

Modal String Solution

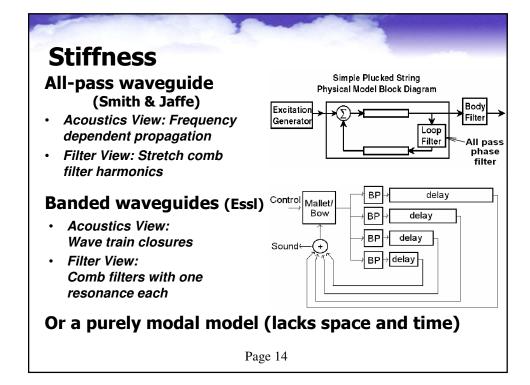
- Superimposed <u>spatial</u> sine waves (modes derive from spatial "boundary conditions")
- Modes result in frequency "partials" (in time)
- Harmonic (f, 2f, 3f, etc.) relationship (speed of sound c = constant)
- Stiffness can cause minor stretching of harmonic frequencies (c(f))


Modal Solution for Bars

Bars are often free at one or both ends


- Spatial modal solution still holds
- Modes no longer harmonic. Stiffness of rigid bars "stretches" frequencies.
- Modes: *f, 2.765f, 5.404f, 8.933f,* etc.

Page 11

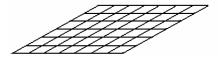


Stiffness in Bars

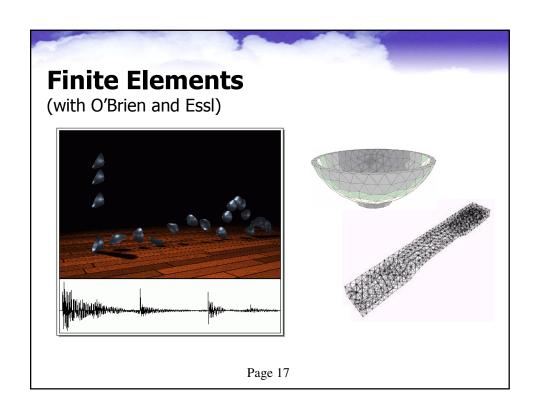
- Stiffness makes wave propagation frequency dependent (c(f))
- Models:
 - Modal partials
 - Use all-pass phase filter to "stretch" waveguide harmonics
 - Merge waveguide with modal by modeling each mode with filter and delay

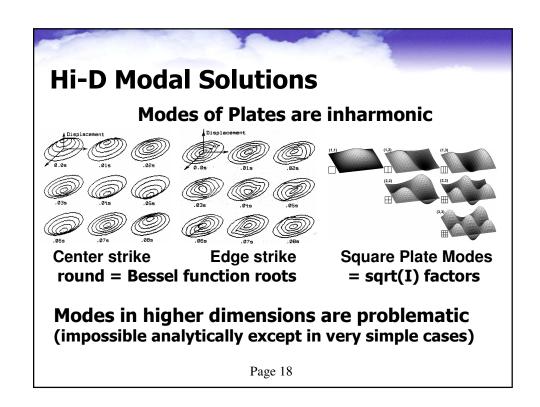
Page 13

- · Open or closed at either end
- Wave equation solution same as strings
- Modes always harmonic because speed of sound is constant with frequency
- Solutions:



or Modal




Page 15

Two and Higher Dimensions

- 2 (N) Dimensional Waveguide Meshes
- or Finite Elements and Finite Differences
 - Discretize objects into cells (elements)
 - Express interactions between them
 - Express differential equation for system
 - Solve by discrete steps in space and time
- or Modal Solution

Where Are We So Far?

- Physical descriptions (equations)
- Give rise to solutions:
 - 1. Traveling Waves
 - 2. Spatial/Frequency Modes
- We can solve the equations directly using
 - 3. Finite Elements/Meshes
- How to choose? Are there more?

Page 19

Waveguides

- Strengths:
 - Cheap in both computation and memory
 - Parametrically meaningful, extensible for more realism
- Weaknesses:
 - Little in the real world looks, behaves, or sounds exactly like a plucked string, flute, etc.
 - Each family needs a different model
 - No general blind signal model

Modal Modeling

- Strengths:
 - Generic, flexible, cheap if only a few modes
 - Great for modeling struck objects of metal, glass, wood

• Weaknesses:

- No inherent spatial sampling
- No (meaningful) phase delay
- Hard to interact directly and continuously (rubbing, damping, etc).
- No general blind signal model (closest)

Page 21

Meshes, Finite Elements

- Strengths
 - (somewhat) arbitrary geometries
 - Less assumptions than parametric forms
 - Can strike, damp, rub, introduce non-linearities at arbitrary points

Weaknesses:

- Expensive
- Don't know all the computational solutions
- Sampling in space/time (high Q problems)
- Dispersion is strange (diagonals vs. not)
- No general blind signal model

Sound Views: Frequency Domain

- Many physical systems have <u>modes</u> (damped oscillations)
- Wave equation (2nd order) or Bar equation (4th order) need 2 or 4 "boundary conditions" for solution
- Once boundary conditions are set solutions are sums of exponentially damped sinusoidal modes
- One more important aspect of frequency:

Page 23

References and Resources

Synthesis ToolKit in C++ (STK)

- STK: a set of classes in C++ for rapid experimentation with sound synthesis.
 Available for free (source, multi-platform)
 - http://www.cs.princeton.edu/~prc
 - http://www-ccrma.stanford.edu/~gary
 - http://www-ccrma.stanford.edu/software/stk
- Based on "Unit Generators," the classical computer music/sound building blocks:
- Oscillators, Filters, Delay Lines, etc.
- Build your own algorithms from these

Book on interactive sound synthesis

Many examples and figures from these notes

References: Waveguide & FE Modeling

- Computer Music Journal, 1992-3, Two Special Issues on Physical Modeling, MIT Press, Vol. 16 No. 4 & Vol. 17 No. 1, Winter 92, Spring 93.
- Van Duyne, S. and J. Smith 1993. "Physical Modeling with the 2-D Digital Waveguide Mesh." In Proceedings of the ICMC, Tokyo, pp. 40-47.
- J.O. Smith, 1997, "Acoustic Modeling Using Digital Waveguides," in Roads et. al. eds., *Musical Signal Processing*, NL, Swets and Zeitlinger.
- Pierce, J. R. and van Duyne, S. A. 1997, A passive non-linear digital filter design which facilitates physics-based sound synthesis of highly nonlinear musical instruments. Journal of the Acoustical Society of America, 101(2):1120-1126.
- Essl, G. and Cook, P., 2000, "Measurements and efficient simulations of bowed bars," Journal of the Acoustical Society of America, 108:1, 379-388.
- O'Brien, J.F., Cook, P.R., Essl, G., 2001, "Synthesizing Sound from Physically Based Motion," In Proc. SIGGRAPH 2001, Los Angeles, CA, 529-536, 2001.

Page 25

References: Modal Synthesis

- Rossing, T. 2000, *The Science of Percussion Instruments*, World Scientific, Singapore. Serra, X. 1986. "A Computer Model for Bar Percussion Instruments," Proc. ICMC, The Hague, pp. 257-262.
- Wawrzynek, J. 1989. "VLSI Models for Sound Synthesis," in Current Directions in Computer Music Research, M. Mathews and J. Pierce Eds., Cambridge, MIT Press.
- Adrien, J.M. 1991, "The Missing Link: Modal Synthesis", in: G. De Poli, A. Picalli, and C. Roads, eds. Representations of Musical Signals. MIT Press, Cambridge, MA.
- Doutaut V. & A. Chaigne 1993. "Time Domain Simulations of Xylophone Bars," Stockholm Music Acoustics Conference, pp. 574-579.
- Larouche, J. & J. Meillier 1994. "Multichannel Excitation/Filter Modeling of Percussive Sounds with Application to the Piano," IEEE Trans. Speech and Audio, pp. 329-344.
- P. Cook 1997, "Physically Inspired Sonic Modeling: (PhISM): Synthesis of Percussive Sounds," Computer Music Journal, 21:3 (expanded from ICMC 1996).
- K. Van den Doel and D. Pai, "Synthesis of Shape Dependent Sounds with Physical Modeling," Proc. Intl. Conference on Auditory Display, Santa Clara, CA, 1997.
- K. van den Doel, P. G. Kry and D. K. Pai, 2001, "FoleyAutomatic: Physically-based Sound Effects for Interactive Simulation and Animation," in *Computer Graphics (ACM SIGGRAPH 2001 Conference Proceedings)*.
- O'Brien, J. F., Shen, C., Gatchalian, C. M., 2002, "Synthesizing Sounds from Rigid-Body Simulations." *ACM SIGGRAPH Symposium on Computer Animation*.

References: Sinusoidal Models

Dudley, H. 1939, "The Vocoder," Bell Laboratories Record, December.

Moorer, A. 1978. "The Use of the Phase Vocoder in Computer Music Applications." Journal of the Audio Engineering Society, 26 (1/2), pp. 42-45.

Dolson, M. 1986, "The Phase Vocoder: A Tutorial," CMJ, 10 (4), pp. 14-27.

Robert J. McAulay and Thomas Quatieri 1986, "Speech Analysis/Synthesis Based on a Sinusoidal Representation," IEEE Trans. ASSP-34, pp. 744-754.

Xavier Serra, 1989, "A System for Sound Analysis/Transformation/Synthesis Based on a Deterministic Plus Stochastic Decomposition," Ph.D. dissertation, Dept. of Music, Stanford University, Stanford CA.

Kelly Fitz, Lippold Haken, and Bryan Holloway,1995, "Lemur - A Tool for Timbre Manipulation," Proc. Intl. Computer Music Conf.

Adrian Freed, Xavier Rodet, and Phillipe Depalle 1993, "Synthesis and Control of Hundreds of Sinusoidal Partials on a Desktop Computer without Custom Hardware," Proc. ICSPAT.

T. Verma, T. Meng, 1998 "An Analysis/Synthesis Tool for Transient Signals that Allows a Flexible Sines+Transients+Noise Model for Audio," 1998 IEEE ICASSP-98. Seattle, WA.

SMS Web site. URL: http://www.iua.upf.es/~sms.

Page 27