
1

������� �	
����
� �

�	
����
�

� Fundamental concept in computation
� Interrupt execution of a program to “handle” an event

� Don’t have to rely on program relinquishing control
� Can code program without worrying about others

� Issues
� What can interrupt and when?
� Where is the code that knows what to do?
� How long does it take to handle interruption?
� Can an interruption be, in turn, interrupted?
� How does the interrupt handling code communicate its results?
� How is data shared between interrupt handlers and programs?

������� �	
����
� �

���
�����	��	
����
�

� Reaction to something in I/O (human, comm link)
� Usually asynchronous to processor activities
� “interrupt handler” or “interrupt service routine” (ISR)

invoked to take care of condition causing interrupt
� Change value of internal variable (count)
� Read a data value (sensor, receive)
� Write a data value (actuator, send)

Main Program
Instruction 1
Instruction 2
Instruction 3
Instruction 4
…..

ISR
Save state
Instruction 1
Instruction 2
Instruction 3
…..
Restore state
Return from Interrupt

������� �	
����
� �

�	
����
�

� Code sample that does not interrupt
char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))
;
/* Return data register */
return SPDR;
}

� Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF

SIGNAL(SIG_SPI) {
RX_Byte = SPDR

}

������� �	
����
� �

����	���	�����
���	����	
��

� Processor and compiler dependent

� Where to find ISR code?
� Different interrupts have separate ISRs

� Who does dispatching?
� Direct

� Different address for each interrupt type
� Supported directly by processor architecture

� Indirect
� One top-level ISR
� Switch statement on interrupt type

� A mix of these two extremes?

2

������� �	
����
� �

����	���	�����
���	����	
��

� How much context to save?
� Registers, flags, program counter, etc.
� Save all or part?
� Agreement needed between ISR and program

� Where should it be saved?
� Stack, special memory locations, shadow registers, etc.
� How much room will be needed on the stack?
� Nested interrupts may make stack reach its limit – what then?

� Restore context when ISR completes

������� �	
����
� �

��	���	���	
����
�

� Can interrupts be ignored?
� It depends on the cause of the interrupt
� No, for nuclear power plant temperature warning
� Yes, for keypad on cell phone (human timescale is long)

� When servicing another interrupt
� Ignore others until done
� Can’t take too long – keep ISRs as short as possible

� Just do a quick count, or read, or write – not a long computation

� Interrupt disabling
� Will ignored interrupt “stick”?

� Rising edge sets a flip-flop
� Or will it be gone when you get to it?

� Level changes again and its as if it never happened
� Don’t forget to re-enable

������� �	
����
� �

������
� �	���	
����
�

� When multiple interrupts happen simultaneously
� Which is serviced first?
� Fixed or flexible priority?

� Priority interrupts
� Higher priority can interrupt
� Lower priority can’t

� Maskable interrupts
� “don’t bother me with that right now”
� Not all interrupts are maskable, some are non-maskable

������� �	
����
� !

�	
����
���	�
���"#$�����

� External interrupts
� From I/O pins of microcontroller

� Internal interrupts
� Timers

� Output compare
� Input capture
� Overflow

� Communication units
� Receiving something
� Done sending

� ADC
� Completed conversion

3

������� �	
����
� %

�	
����
�&$��'�(
���#�)*�

� Fixed location
in memory to find
first instruction for
each type of
interrupt

� Only room for one
instruction
� JMP to location

of complete ISR

������� �	
����
� �+

����	��,����	
���	��	
����

� Finish executing current instruction
� Disable all interrupts
� Push program counter on to stack
� Jump to interrupt vector table
� Jump to start of complete ISR
� Save any context that ISR may otherwise change

� Registers and flags must be saved within ISR and restored before it
returns – this is very important!

�� ReRe--enable interrupts if nested interrupts are okenable interrupts if nested interrupts are ok
�� Complete ISR’s codeComplete ISR’s code
�� ReRe--enable interrupts upon returnenable interrupts upon return
�� Jump back to next instruction before interruptionJump back to next instruction before interruption

Automatic

RETI

Compiler

SEI

CLI

������� �	
����
� ��

�������-�
�����)*�$

� When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

� This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)

� One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

cli();
…..critical section code goes here…..
sei();

������� �	
����
� ��

��
��	�*��	
����
��

� Special pins: INT0, INT1, INT2
� Can interrupt on edge or level

� Can interrupt even if set to be output pins
� Implements “software interrupts” by setting output

4

������� �	
����
� ��

�*�����.��/��
���#�$��0��	
��

� Timer0/Counter0
� Clear timer on compare match (auto reload)
� Prescaler (divide clock by up to 1024)
� Overflow and compare

match interrupts
� Registers

� Configuration
� Count value
� Output compare value

������� �	
����
� ��

#�$��0��	
��������
���

� Timer/Counter
Control Register
TCCR0

������� �	
����
� ��

#�$��0��	
��������
����1(�	
2�3

� Timer/Counter
Control Register
TCCR0

������� �	
����
� ��

#�$��0��	
��������
����1(�	
2�3

� Timer/Counter
Control Register
TCCR0

5

������� �	
����
� ��

#�$��0��	
��������
����1(�	
2�3

������� �	
����
� �!

��

�	�������
���'�*��

� Defined names for each register and bit
� Set timer to clear on match
� Set prescaler to 1024

TCCR0 = (1<<WGM01) | (1<<CS02) | (1<<CS00);

� Set count value to compare against

OCR0 = 150;

� Set timer to interrupt when it reaches count

TIMSK = (1<<OCIE0);

������� �	
����
� �%

���
�	���	��	
����
�4�	�*����	��

� Set and clear interrupt enable
� sei();
� cli();

� Interrupt handler
� SIGNAL(SIG_OUTPUT_COMPARE0)

{
i++;

}

� Setting I/O registers
� TCCR0 = (1<<WGM01) | (1<<CS02) | (1<<CS00);

� Enabling specific interrupts
� TIMSK = (1<<OCIE0);

������� �	
����
� �+

"	�*���
������
�*�(�	������	

� Use charge-redistribution technique
� no sample and hold circuitry needed
� even with perfect circuits quantization error occurs

� Basic capacitors
� sum parallel capacitance

� � �� � �� ��

� �� ��

6

������� �	
����
� ��

"	�*���
������
�*�(�	������	�1(�	
2�3

� Two reference voltage
� mark bottom and top end of range of analog values that can be

converted (VL and VH)
� voltage to convert must be within these bounds (VX)

� Successive approximation
� most approaches to A/D conversion are based on this
� 8 to 16 bits of accuracy

� Approach
� sample value
� hold it so it doesn’t change
� successively approximate
� report closest match

��

��

��

������� �	
����
� ��

"5
�5-�6 ��$�*��

� During the sample time the top plate of all capacitors is
switched to reference low VL

� Bottom plate is set to unknown analog input VX

� Q = CV
� QS = 16 (VX - VL)

��

��

��

�
�

��

��

�	

 � � � ���

������� �	
����
� ��

"5
�5-�6 ��*��

� Hold state using logically controlled analog switches
� Top plates disconnected from VL

� Bottom plates switched from VX to VL

� QH = 16 (VL - VI)
� conservation of charge QS = QH

� 16 (VX - VL) = 16 (VL - VI)
� VX - VL = VL - VI (output of op-amp)

��

��

��

�
�

��

��

 � � � �

��

������� �	
����
� ��

"5
�5-�6 �((��������������$�
��	

� Each capacitor successively switched from VL to VH
� Largest capacitor corresponds to MSB

� Output of comparator determines bottom plate
voltage of cap
� > 0 : remain connected to VH

� < 0 : return to VL �
�

��

��

 � � � �

��

��

� � 	 �� 	

����

7

������� �	
����
� ��

"5
�5-����$�*��5 7�8

� Suppose VX = 21/32 (VH - VL) and already sampled
� Compare after shifting half of capacitance to VH

� VI goes up by + 8/16 (VH-VI) - 8/16 (VL-VI) = + 8/16 (VH - VL)
� original VL - VI goes down and becomes
� VL - (VI + .5 (VH - VL)) = VL - VI - .5 (VH - VL)

� Output > 0

��

��

��

�
������

������ � ���

�
�

��

����

��

� � � �

������� �	
����
� ��

"5
�5-����$�*��5 17�85�3

� Compare after shifting another part of cap. to VH
� VI goes up by + 4/16 (VH-VI) - 4/16 (VL-VI) = + 4/16 (VH - VL)
� original VL - VI goes down and becomes
� VL - (VI + .25 (VH - VL)) = VL - VI - .25 (VH - VL)

� Output < 0 (went too far)

��

��

��

�
�������

������� � ���

�
������

�
�

��

����

��

 �

� � �

������� �	
����
� ��

"5
�5-����$�*��5 17�85�3

� Compare after shifting another part of cap. to VH
� VI goes up by + 2/16 (VH-VI) - 2/16 (VL-VI) = + 2/16 (VH - VL)
� original VL - VI goes down and becomes
� VL - (VI + .125 (VH - VL)) = VL - VI - .125 (VH - VL)

� Output > 0

��

��

��

�
�������

�������� � ���

�
������

�
�

��

����

��

�

�

� �

������� �	
����
� �!

"5
�5-����$�*��5 .�8

� Compare after shifting another part of cap. to VH

� VI goes up by + 1/16 (VH-VI) - 1/16 (VL-VI) = + 1/16 (VH - VL)
� original VL - VI goes down and becomes
� VL - (VI + .0625 (VH - VL)) = VL - VI - .0625 (VH - VL)

� Output < 0 (went too far again)

��

��

��

��������� � ���

�
�

��

����

��

�

� �

�

8

������� �	
����
� �%

"5
�5-����$�*��,�	�*����*

� Input sample of 21/32
� Gives result of 1010 or 10/16 = 20/32
� 3% error

�
�

��

����

��

�

�

� �

������� �	
����
� �+

"5
�5-���	������	�������

������� �	
����
� ��

�*�����.��/��
�"5
�5-���	������	

� Needs a comparator
and a D-to-A converter

� Takes time to do
successive
approximation

� Interrupt generated
when conversion is
completed

������� �	
����
� ��

"5
�5-���	������	��	�
���"#$�����

� 10-bit resolution (adjusted to 8 bits as needed)
� 65-260 usec conversion time
� 8 multiplexed input channels
� Capability to do differential conversion

� Difference of two pins
� Optional gain on differential signal (amplifies difference)

� Interrupt on completion of A-to-D conversion
� 0-VCC input range
� 2*LSB accuracy (2 * 1/1024 = ~0.2%)

� Susceptible to noise – special analog supply pin (AVCC) and
capacitor connection for reference voltage (AREF)

9

������� �	
����
� ��

"5
�5-���	������	�1(�	
2�3

������� �	
����
� ��

"5
�5-���	������	�1(�	
2�3

� Single-ended or differential
� 1 of 8 single-ended
� ADCx – ADC1 at 1x gain
� ADC{0,1} – ADC0 at 10x
� ADC{0,1} – ADC0 at 200x
� ADC{2,3} – ADC2 at 10x
� ADC{2,3} – ADC3 at 200x
� ADC{0,1,2,3,4,5} – ADC2 at 1x

������� �	
����
� ��

"5
�5-���	������	�1(�	
2�3

������� �	
����
� ��

"5
�5-���	������	�1(�	
2�3

10

������� �	
����
� ��

"5
�5-���	������	�1(�	
2�3

������� �	
����
� �!

���
�	���	��	
����
�4�	�*����	���1����	3

� Ensure main program sets up all registers
� Enable interrupts as needed
� Enable global interrupts (SEI)
� Write handler routine for each enabled interrupt

� What if an interrupt occurs and a handler isn’t defined?

� Make sure routine does not disrupt others
� Data sharing problem
� Save any state that might be changed (done by compiler)

� Re-enable interrupts upon return
� done by compiler with RETI

������� �	
����
� �%

��9���$����

� Processor can go to “sleep” and save power
� Different modes put different sets of modules to sleep

� Which one to use depends on which modules are needed to
wake up processor

� Timers, external interrupts, ADC, serial communication lines, etc.

� set_sleep_mode (mode);
� sleep_mode ();

������� �	
����
� �+

��9���$�����1(�	
2�3

11

������� �	
����
� ��

��9���$�����1(�	
2�3

� Wake up sources and active clocks

