

Debouncing

- When a switch (any type) changes state (on $->$ off or off $->$ on), it presents a mechanical bouncing which
generates a signal similar to the one
shown at the right

The resistor R is needed because the signal S can not be left "floating" in na undefined state when the switch
changes from state 1 to 2

- Without debouncing the signal can generate several interrupts (or status changes) corresponding to just one action.
- Debouncing consists in "Filtering" the signal So that a proper operation of the switch action is sensed.

Debouncing can be done in hardware of software

-If status loop: after first status change, program timer and after elapsed time read key status.
-If interrupt: on first interrupt program timer which will interrupt after elapsed time. Then read key status.

Light Dependent Resistors (LDRs)

- Typical materials used are Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), Lead Sulphide decreases) with light striking it
- (also called photocells, photoconductors)
- Light striking a semiconducting material can provide sufficient energy to cause electrons to break away from atoms.
- Free electrons and holes can be created which causes resistance to be reduced

Light Dependent Resistors (LDRs)

CdS LDR
Top view

Illumination

Light Dependent Resistors (LDRs)

- LDRs have a low energy gap
- Operate over a wide wavelengths (some, into infrared)
- Indium antimonide is good for IR. When cooled is very sensitive, used for thermal scanning of earth's surface

Analog to digital conversion

- Use charge-redistribution technique
- no sample and hold circuitry needed
even with perfect circuits quantization error occurs
- Basic capacitors
- sum parallel capacitance

Analog to digital conversion (cont'd)

- Two reference voltage
- mark bottom and top end of range of analog values that can be converted (V_{L} and V_{H})
- voltage to convert must be within these bounds (V_{X})
- Successive approximation
- most approaches to A/D conversion are based on this
- 8 to 16 bits of accuracy
- Approach
- sample value
- hold it so it doesn't change

successively approximate
$\longrightarrow V_{X}$
- report closest match

A-to-D - sample
- During the sample time the top plate of all capacitors is switched to reference low V_{L}
- Bottom plate is set to unknown analog input V_{x}
- $Q=C V$
- $Q_{S}=16\left(V_{x}-V_{L}\right)$

A-to-D - successive approximation

- Each capacitor successively switched from V_{L} to V_{H}

Largest capacitor corresponds to MSB

- Output of comparator determines bottom plate
voltage of cap
- >0 : remain connected to V_{H}
< 0 : return to V_{b}

CSEP56
${ }^{11}$

A-to-D - hold

- Hold state using logically controlled analog switches
- Top plates disconnected from V_{L}
- Bottom plates switched from V_{X} to V_{L}
- $Q_{H}=16\left(V_{L}-V_{I}\right)$
- conservation of charge $\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{H}}$
- $16\left(\mathrm{~V}_{\mathrm{X}}-\mathrm{V}_{\mathrm{L}}\right)=16\left(\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{I}}\right)$
- $\mathrm{V}_{\mathrm{X}}-\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{I}}$ (output of op-amp)

EP56

$\longrightarrow V_{H}$

A-to-D example - MSB

- Suppose $\mathrm{V}_{\mathrm{X}}=21 / 32\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$ and already sampled
- Compare after shifting half of capacitance to V_{H}
- V_{1} goes up by $+8 / 16\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{I}}\right)-8 / 16\left(\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{I}}\right)=+8 / 16\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$
a original $V_{L}-V_{l}$ goes down and becomes
- $\mathrm{V}_{\mathrm{L}}-\left(\mathrm{V}_{\mathrm{I}}+.5\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)\right)=\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{I}}-.5\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$
- Output > 0

CSEP567
12

A-to-D example - (MSB-1)

- Compare after shifting another part of cap. to V_{H}
$\square \mathrm{V}_{\mathrm{I}}$ goes up by $+4 / 16\left(\mathrm{~V}_{\mathrm{H}^{-}}-\mathrm{V}_{\mathrm{I}}\right)-4 / 16\left(\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{I}}\right)=+4 / 16\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$ original $V_{L}-V_{1}$ goes down and becomes
- $\mathrm{V}_{\mathrm{L}}-\left(\mathrm{V}_{\mathrm{I}}+.25\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)\right)=\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{L}}-.25\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$
- Output <0 (went too far)

CSEP56

A-to-D example - (MSB-2)

- Compare after shifting another part of cap. to V_{H}
- V_{I} goes up by $+2 / 16\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{I}}\right)-2 / 16\left(\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{I}}\right)=+2 / 16\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$ - original $V_{L}-V_{1}$ goes down and becomes
$\mathrm{V}_{\mathrm{L}}-\left(\mathrm{V}_{\mathrm{L}}+.125\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)\right)=\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{L}}-.125\left(\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$
- Output > 0

A-to-D example final result

- Input sample of 21/32
- Gives result of $\underline{1010}$ or $10 / 16=20 / 32$
- 3\% error

CSEP567

A-to-D Conversion on the ATmega16

- 10-bit resolution (adjusted to 8 bits as needed)
- 65-260 usec conversion time
- 8 multiplexed input channels
- Capability to do differential conversion
- Difference of two pins
- Optional gain on differential signal (amplifies difference)
- Interrupt on completion of A-to-D conversion
- $0-V_{C C}$ input range
- 2*LSB accuracy (2 * $1 / 1024=\sim 0.2 \%$)

Susceptible to noise - special analog supply pin (AVCC) and capacitor connection for reference voltage (AREF)

CSEP56 \qquad

Closer Look at A-to-D Conversion

- Needs a comparator and a D-to-A converter
- Takes time to do successive approximation
- Interrupt generated when conversion is completed

CSEP567
18

A-to-D Conversion (cont'd)

ADC Multiplexer Selection
Register - ADMUX

1	1	Intemal 2 2.6VV Voltage Rete
- Bit 5 - ADLAR: ADC Left Adjust Result		

 regard oss of any ongoing conversions. For a completed description of this bit, see -T
ADC Cata Reisiser- ADCLLand ADC Data Register - ADCL and ADCH" on page 218

```
A-to-D Conversion
(cont'd)
Single-ended or differential
- 1 of 8 single-ended
- ADCx - ADC1 at \(1 x\) gain
- \(\operatorname{ADC}\{0,1\}\) - ADC0 at 10x
- \(\operatorname{ADC}\{0,1\}\) - ADC0 at \(200 x\)
- ADC\{2,3\} - ADC2 at 10x
- ADC\{2,3\} - ADC3 at 200x
- \(\operatorname{ADC}\{0,1,2,3,4,5\}-\operatorname{ADC} 2\) at \(1 x\)
```



```
\({ }^{21}\)
```

A-to-D Conversion (cont'd)

The ADC Data Register ADCL and ADCH

ADLAR $=0$

CSEP567
${ }^{22}$

A-to-D Conversion (cont'd)

ADC Control and Status
Register A- ADCSRA

CSEP567 ${ }^{23}$

A-to-D Conversion (cont'd)
$\underset{\substack{\text { Special Functionlo Register - } \\ \text { SFIOR }}}{ }$

Bit 4-Res: Reserved Bii
This bit is resened for future use. To ensure compatbility with future devices, this bit

[^0]
Writing an Interrupt Handler in C

(again)

- Ensure main program sets up all registers
- Enable interrupts as needed
- Enable global interrupts (SEI)
- Write handler routine for each enabled interrupt
- What if an interrupt occurs and a handler isn't defined?
- Make sure routine does not disrupt others
- Data sharing problem
- Save any state that might be changed (done by compiler)
- Re-enable interrupts upon return
- done by compiler with RETI

Power modes (cont'd)
Power modes (cont'd)
MCU Control Register $-~$
MCUCR

- Bit 6 - SE: Sleep Enable

The SE bit must be wititen to logic one to make the MCU enter the sleep mode when the
SLEEEP instruction is isexecuted. To avoid the MCU entering the sleep mode unless it Ste
the progmammers surpose, it it recommended to wite the Sleep Enable (SE) bit to one
just teefre e

Power modes

- Processor can go to "sleep" and save power
- Different modes put different sets of modules to sleep
- Which one to use depends on which modules are needed to wake up processor
- Timers, external interrupts, ADC, serial communication lines, etc.
- set_sleep_mode (mode);
- sleep_mode ();
- Wake up sources and active clocks

CSEP56

[^0]: CSEP56

