
������� ��		
������� �

��		
�������

������� ��		
������� �

��		
��������	������

� Communication methods
� Media and signalling conventions used to transmit data between

digital devices
� Different physical layers methods including:

� wires, radio frequency (RF), optical (IR)

� Different encoding schemes including:
� amplitude, frequency, and pulse-width modulation

Binary Phase Shift Keying (BPSK)

Frequency Shift Keying (FSK)

On-Off Keying (OOK)

No encoding (Baseband)

WaveformModulation Technique

������� ��		
������� �

��		
��������	������

� Dimensions to consider
� bandwidth – number of wires – serial/parallel
� speed – bits/bytes/words per second
� timing methodology – synchronous or asynchronous
� number of destinations/sources
� arbitration scheme – daisy-chain, centralized, distributed
� protocols – provide some guarantees as to correct communication

������� ��		
������� �

���������

� Serial
� Single wire or channel to trasmit information one bit at a time
� Requires synchronization between sender and receiver
� Sometimes includes extra wires for clock and/or handshaking
� Good for inexpensive connections (e.g., terminals)
� Good for long-distance connections (e.g., LANs)
� Examples: RS-232, Ethernet, I2C, IrDA, USB, Firewire, Bluetooth

� Parallel
� Multiple wires to transmit information one byte or word at a time
� Good for high-bandwidth requirements (CPU to disk)
� More expensive wiring/connectors/current requirements
� Examples: SCSI-2, PCI bus (PC), PCMCIA (Compact Flash)

� Issues
� Encoding, data transfer rates, cost of connectors and wires, modularity,

error detection and/or correction

������� ��		
������� �

�����

� Serial
� low-speed, cheap connections

� RS-232 1K–20K bits/sec, copper wire
� medium-speed efficient connections

� I2C 10K-400K bits/sec, board traces
� IrDA 9.6K-4M bits/sec, line-of-sight, 0.5-6.0m

� high-speed, expensive connections
� USB 1.5M bytes/sec, USB2 60M bytes/sec
� Ethernet 1.5M-1G bits/sec, twisted-pair or co-axial
� Firewire 12.5-50M bytes/sec

� Parallel
� low-speed, not too wide

� SCSI-2 10M bytes/sec, 8 bits wide
� PCI bus, 250M bytes/sec, 32 bits wide
� PCMCIA (CF+), 9-10M bytes/sec, 16 bits wide

� high-speed, very wide – memory systems in large multi-processors
� 200M-2G bytes/sec, 128-256 bits wide

������� ��		
������� �

�����

� Issues
� length of the wires (attenuation, noise, capacitance)
� connectors (conductors and/or transducers)
� environment (RF/IR interference, noise)
� current switching (spikes on supply voltages)
� number and types of wires (cost of connectors, cross-talk)
� flow-control (if communicating device can’t keep up)

������� ��		
������� �

��	����	����������

� Asynchronous
� less wires (no clock)
� no skew concerns
� synchronization overhead
� appropriate for loosely-coupled systems (CPU and peripherals)
� common in serial schemes

� Synchronous
� clock wires and skew concerns
� no synchronization overhead
� can be high-speed if delays are small and can be controlled
� appropriate for tightly-couple systems (CPU and memory/disk)
� common in parallel schemes

������� ��		
�������

��	����	����������

� Issues
� clock period and wire delay
� synchronization and skew
� encoding of timing and data information
� handshaking
� flow-control
� power consumption

������� ��		
������� !

"
	#�$��%���&�����		
�������

� Single source – single destination
� point-to-point
� cheap connections, no tri-stating necessary

� Single source – multiple destination
� fanout limitations
� addressing scheme to direct data to one destination

� Multiple source – multiple destination
� arbitration between senders
� tri-stating capability is necessary
� collision detection
� addressing scheme
� priority scheme
� fairness considerations

������� ��		
������� �'

($#��$���������	��

� Daisy-chain or token passing
� devices either act or pass to next
� fixed priority order
� as many wires as devices
� fairness issues

� Centralized
� request to central arbiter
� central arbiter implements priority scheme
� wires from/to each device can be costly
� can be dynamically changing priority/fairness

� Distributed
� no central arbiter
� common set of wires (or ether) observed by all devices
� fixed priority/fairness scheme

������� ��		
������� ��

��$����������
����

� RS-232 (IEEE standard)
� serial protocol for point-to-point, low-cost, low-speed applications for PCs

� I2C (Philips)
� up to 400Kbits/sec, serial bus for connecting multiple components

� Ethernet (popularized by Xerox)
� most popular local area network protocol with distributed arbitration

� IrDA (Infrared Data Association)
� up to 115kbps wireless serial (Fast IrDA up to 4Mbs)

� Firewire (Apple – now IEEE1394)
� 12.5-50Mbytes/sec, consumer electronics (video cameras, TVs, audio, etc.)

� SPI (Motorola)
� 10Mbits/sec, commonly used for microcontroller to peripheral connections

� USB (Intel – followed by USB-2)
� 12-480Mbits/sec, isochronous transfer, desktop devices

� Bluetooth (Ericsson – cable replacement)
� 700Kbits/sec, multiple portable devices, special support for audio

������� ��		
������� ��

)�*����+������$����$��������,

� Point-to-point, full-duplex
� Synchronous or asynchronous
� Flow control
� Variable baud (bit) rates
� Cheap connections (low-quality and few wires)

� Variations: parity bit; 1, 1.5, or 2 stop bits

�����

���

��	���

����

�����

���

���

���

������� ��		
������� ��

�����������������

���������������������

�
�����	���������
�������

���������������������

)�*������$��

� TxD – transmit data
� TxC – transmit clock
� RTS – request to send
� CTS – clear to send

� RxD – receive data
� RxC – receive clock
� DSR – data set ready
� DTR – data terminal ready

� Ground

������� ��		
������� ��

�$���%�$�	����

� Synchronous
� clock signal wire is used by both receiver and sender to sample data

� Asynchronous
� no clock signal in common
� data must be oversampled (16x is typical) to find bit boundaries

� Flow control
� handshaking signals to control rate of transfer

������� ��		
������� ��

+Vcc

device
1

device
2

device
n

SCL

SDA

-���$*-����$�������$
����
��+-��,

� Modular connections on a printed circuit board
� Multi-point connections (needs addressing)
� Synchronous transfer (but adapts to slowest device)
� Similar to Controller Area Network (CAN) protocol

used in automotive applications
� Similar to TWI (Two-Wire Interface) on ATmegas

������� ��		
������� ��

SDA

SCL

START STOP

��$���������%�$	��

� SDA going low while SCL high signals start of data
� SDA going high while SCL high signals end of data
� SDA can change when SCL low
� SCL high (after start and before end) signals that a data bit can be read

������� ��		
������� ��

SDA

SCL

1 3 4 5 6 7 8 ack2

������$���%�$

� Byte followed by a 1 bit acknowledge from receiver
� Open-collector wires

� sender allows SDA to rise
� receiver pulls low to acknowledge after 8 bits

� Multi-byte transfers
� first byte contains address of receiver
� all devices check address to determine if following data is for them
� second byte usually contains address of sender

������� ��		
������� �

clk 1

clk 2

SCL

���.�����$���/�����

� Synchronous data transfer with variable speed devices
� go as fast as the slowest device involved in transfer

� Each device looks at the SCL line as an input as well as driving it
� if clock stays low even when being driven high then another device needs

more time, so wait for it to finish before continuing
� rising clock edges are synchronized

������� ��		
������� �!

($#��$�����

� Devices can start transmitting at any time
� wait until lines are both high for some minimum time
� multiple devices may start together - clocks will be synchronized

� All senders will think they are sending data
� possibly slowed down by receiver (or another sender)
� each sender keeps watching SDA - if ever different

(driving high, but its really low) then there is another driver
� sender that detects difference gets off the bus and aborts message

� Device priority given to devices with early 0s in their address
� 00….111 has higher priority than 01…111

������� ��		
������� �'

-���$*-����$�������$
����
��+-��,

� Supports data transfers from 0 to 400KHz
� Philips (and others) provide many devices

� microcontrollers with built-in interface
� A/D and D/A converters
� parallel I/O ports
� memory modules
� LCD drivers
� real-time clock/calendars
� DTMF decoders
� frequency synthesizers
� video/audio processors

������� ��		
������� ��

��$������$����$���-���$%��

� Common serial interface on many microcontrollers
� Simple 8-bit exchange between two devices

� Master initiates transfer and generates clock signal
� Slave device selected by master

� One-byte at a time transfer
� Data protocols are defined by application
� Must be in agreement across devices

������� ��		
������� ��

��-����.�0���$�	

� 8-bits transferred in each direction every time
� Master generates clock
� Shift enable used to select one of many slaves

������� ��		
������� ��

��-��������(�	�����

� Prescaler for
clock rate

� Interrupt on
receive and on
send complete

� Automatically
generates SS

������� ��		
������� ��

��-�)������$�

������� ��		
������� ��

1�������-������2����$

void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */
DDRB = _BV(DD_MOSI) | _BV(DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & _BV(SPIF)))
;

}

������� ��		
������� ��

1�������-���������&�

void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDRB = _BV(DD_MISO);
/* Enable SPI */
SPCR = _BV(SPE);

}

char SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & _BV(SPIF)))
;
/* Return data register */
return SPDR;

}

������� ��		
������� ��

0�����������������-

� Data is exchanged between master and slave
� Master always initiates
� May need to poll slave (or interrupt-driven)

� Decide on how many bytes of data have to move in each direction
� Transfer the maximum for both directions
� One side may get more than it needs

� Decide on format of bytes in packet
� Starting byte and/or ending byte?
� Can they be distinguished from data in payload?
� Length information or fixed size?

� SPI buffer
� Write into buffer, specify length, master sends it out, gets data
� New data arrives at slave, slave interrupted, provides data to go to

master, reads data from master in buffer

������� ��		
������� �

��	��������%�$�3�0-���-
int main(void)
{

FTDI466API usbDevice;
char buffer[256];
unsigned char rxBuffer[256];
unsigned char txBuffer[256];
DWORD numBytesToSend;
DWORD bytesSent;
DWORD numBytesToRead;
DWORD bytesReceived;
// setup USB device for MPSSE mode
bool setup = usbDevice.open();
if(!setup)

return 0;
cout << "INITIALIZING SPI" << endl;
// setup for SPI communication
txBuffer[0] = 0x80; // setup PORT
txBuffer[1] = 0x08; // make CS high
txBuffer[2] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4
txBuffer[3] = 0x86; // set clk divisor to Tx at 200kHz
txBuffer[4] = 0x1D; // speed low byte
txBuffer[5] = 0x00; // speed high byte
txBuffer[6] = 0x85; // disconnect TDI/DO output from TDO/DI input for loopback testing
numBytesToSend = 7;

������� ��		
������� �!

��	��������%�$�3�0-���-�+���4�,

// send the instructions ot the USB device
bytesSent = usbDevice.write(txBuffer, numBytesToSend);

if(bytesSent != numBytesToSend)
cerr << "Not all the bytes were sent when initializing MPSSE" << endl;

// see if there were any error codes when setting up SPI
numBytesToRead = usbDevice.getReceiveQueueSize();

if(numBytesToRead > 0)
{

bytesReceived = usbDevice.read(rxBuffer, numBytesToRead);

if(bytesReceived != numBytesToRead)
cerr << "Problem when trying to retrieve the error bytes" << endl;

for(unsigned int i = 0; i < bytesReceived; i++)
cout << "Error Byte: " << rxBuffer[i] << endl;

}

������� ��		
������� �'

��	��������%�$�3�0-���-�+���4�,
// loop to demonstrate the SPI protocol
for(int loop = 0; loop < 10; loop++)
{

Sleep(1000);

txBuffer[0] = 0x80; // setup PORT
txBuffer[1] = 0x00; // make CS low
txBuffer[2] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4
txBuffer[3] = 0x35; // clock out on negative edge, in on negative edge, MSB
txBuffer[4] = 0x04; // low byte of length : note a length of zero is 1 byte, 1 is 2 bytes
txBuffer[5] = 0x00; // high byte of length
txBuffer[6] = 0x71; // payload
txBuffer[7] = 0x72;
txBuffer[8] = 0x73;
txBuffer[9] = 0x74;
txBuffer[10] = 0x75;
txBuffer[11] = 0x80; // setup PORT
txBuffer[12] = 0x08; // make CS high
txBuffer[13] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4

numBytesToSend = 14;

// send bytes
bytesSent = usbDevice.write(txBuffer, numBytesToSend);
if(bytesSent != numBytesToSend)

cerr << "Not all the bytes were sent when initializing MPSSE" << endl;

������� ��		
������� ��

��	��������%�$�3�0-���-�+���4�,

Sleep(5); // make sure the usb device has enough time to execute command - 5 ms latency timeout is set

// get number of bytes in the received queue
numBytesToRead = usbDevice.getReceiveQueueSize();
cout << "Received " << numBytesToRead << " Bytes" << endl;
if(numBytesToRead > 0)
{

// get the received bytes
bytesReceived = usbDevice.read(rxBuffer, numBytesToRead);

if(bytesReceived != numBytesToRead)
cerr << "Problem when trying to retrieve the bytes from the receive queue" <<

endl;
else
{

// print out the bytes received over SPI in hex
for(unsigned int i=0; i < bytesReceived; i++)

cout << itoa(rxBuffer[i],buffer,16) << " ";
cout << endl;

}
}

}

������� ��		
������� ��

1��&�$������$�����
�

� Connecting peripherals to PCs
� Ease-of-use
� Low-cost
� Up to 127 devices (optionally powered through bus)
� Transfer rates up to 480 Mb/s

� Variable speeds and packet sizes
� Full support for real-time data for voice, audio, and video
� Protocol flexibility for mixed-mode isochronous data transfers

and asynchronous messaging
� PC manages bus and allocates slots (host controller)

� Can have multiple host controllers on one PC
� Support more devices than 127

������� ��		
������� ��

1�����$����$���

������� ��		
������� ��

1���

� Tree of devices
– one root controller

������� ��		
������� ��

1���0�����$���%�$

� Data transfer speeds
� Low is <0.8v, high is >2.0v differential
� 480Mb/sec, 12Mb/sec, 1.5Mb/sec
� Data is NRZI encoded (data and clock on one wire)
� SYNC at beginning of every packet

������� ��		
������� ��

")5-��������

� NRZI – Non-return to zero inverted
� Toggles a signal to transmit a “0” and leaves the signal unchanged

for a “1”
� Also called transition encoding
� Long string of 0s generates a regular waveform with a frequency

half the bit rate
� Long string of 1s generates a flat waveform – bit stuff a 0 every 6

consecutive 1s to guarantee activity on waveform

������� ��		
������� ��

")5-���������+���4�,

������� ��		
������� �

1���0�����$���%�$������

� Control Transfers:
� Used to configure a device at attach time and can be used for

other device-specific purposes, including control of other pipes on
the device.

� Bulk Data Transfers:
� Generated or consumed in relatively large and bursty quantities

and have wide dynamic latitude in transmission constraints.
� Interrupt Data Transfers:

� Used for timely but reliable delivery of data, for example,
characters or coordinates with human-perceptible echo or
feedback response characteristics.

� Isochronous Data Transfers:
� Occupy a prenegotiated amount of USB bandwidth with a

prenegotiated delivery latency. (Also called streaming real time
transfers)

������� ��		
������� �!

1�����.���3�$	��

� Sync + PID + data + CRC
� Basic data packet

� Sync: 8 bits (00000001)
� PID: 8 bits (packet id – type)
� Data: 8-8192 bits (1K bytes)
� CRC: 16 bits (cyclic redundancy check sum)

� Other data packets vary in size
� May be as short as only 8 bits of PID

������� ��		
������� �'

1����$���������.

� FTDI
USB chip
implements
right side

� Communicates
to physical
device
through SPI

