
1

CSEP567– tonight:

TinyOS

CSEP567 TinyOS 2

TinyOS

 Open-source development environment
 Simple (and tiny) operating system – TinyOS
 Programming language and model – nesC
 Set of services

 Principal elements
 Scheduler/event model of concurrency
 Software components for efficient modularity
 Software encapsulation for resources of sensor networks

CSEP567 TinyOS 3

TinyOS Kernel Design

 Two-level scheduling structure
 Events

 Small amount of processing to be done in a timely manner
 E.g. timer, ADC interrupts
 Can interrupt longer running tasks

 Tasks
 Not time critical
 Larger amount of processing
 E.g. computing the average of a set of readings in an array
 Run to completion with respect to other tasks

 Only need a single stack

CSEP567 TinyOS 4

TinyOS Concurrency Model

Tasks

FIFO queue

Interrupts

Two-level of concurrency: tasks and interrupts

2

CSEP567 TinyOS 5

TinyOS Concurrency Model (cont’d)

 Tasks
 FIFO queue
 Placed on queue by:

 Application
 Other tasks
 Self-queued
 Interrupt service routine

 Run-to-completion
 No other tasks can run until completed
 Interruptable, but any new tasks go to end of queue

 Interrupts
 Stop running task
 Post new tasks to queue

CSEP567 TinyOS 6

Concurrency Model

 Asynchronous Code (AC)
 Any code that is reachable from an interrupt handler

 Synchronous Code (SC)
 Any code that is ONLY reachable from a task
 Boot sequence

 Potential race conditions
 Asynchronous Code and Synchronous Code
 Asynchronous Code and Asynchronous Code
 Non-preemption eliminates data races among tasks

 nesC reports potential data races to the programmer at compile time
(new with version 1.1)

 Use atomic statement when needed
 async keyword is used to declare asynchronous code to compiler

CSEP567 TinyOS 7

TinyOS Programming Model

 Separation of construction and composition
 Programs are built out of components

 Specification of component behavior in terms of a set of interfaces
 Components specify interfaces they use and provide

 Components are statically wired to each other via their interfaces
 This increases runtime efficiency by enabling compiler optimizations

 Finite-state-machine-like specifications
 Thread of control passes into a component through its interfaces to

another component

CSEP567 TinyOS 8

TinyOS Basic Constructs

 Commands
 Cause action to be initiated

 Events
 Notify action has occurred
 Generated by external interrupts
 Call back to provide results

from previous command
 Tasks

 Background computation
 Not time critical

Hardware
Interface

event

command

Component

Application

event

command

task

task

task

3

CSEP567 TinyOS 9

Flow of Events and Commands

 Fountain of events leading to commands and tasks (which in turn
issue may issue other commands that may cause other events, …)

Hardware
interrupts

ev
en

ts commands

tasks

Software

task to get
out of async

CSEP567 TinyOS 10

Split Phase Operations

Event handler

Component2

Component1

Check success flag
(OK, failed, etc.)

Event or task

Command

Task

post task and return
OK, or return busy

call command,
try again if not OK

task executes and
signals completion
with event

Phase I
• call command with parameters
• command either posts task to do

real work or signals busy and
to try again later

Phase II
• task completes and uses event

(with return parameters) to signal
completion

• event handler checks for success
(may cause re-issue of
command if failed)

CSEP567 TinyOS 11

TinyOS File Types

 Interfaces (xxx.nc)
 Specifies functionality to outside world
 what commands can be called
 what events need handling

 Module (xxxM.nc)
 Code implementation
 Code for Interface functions

 Configuration (xxxC.nc)
 Wiring of components
 When top level app,

drop C from filename xxx.nc
interfaceB.nc

comp3M.nc
(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

interfaceM.nc

app.nc
(wires)

interfaceA.nc

main.nc

interfaceM.nc

CSEP567 TinyOS 12

The nesC Language

 nesC: networks of embedded sensors C
 Compiler for applications that run on UCB motes

 Built on top of avg-gcc
 nesC uses the filename extension ".nc“

 Static Language
 No dynamic memory (no malloc)
 No function pointers
 No heap

 Influenced by Java
 Includes task FIFO scheduler
 Designed to foster code reuse
 Modules per application range from 8 to 67, mean of 24***
 Average lines of code in a module only 120***
 Advantages of eliminating monolithic programs

 Code can be reused more easily
 Number of errors should decrease

Application
(nesC)

TinyOS kernel (C)

TinyOS libs (nesC)
nesC

Compiler

Application &
TinyOS (C)

C
Compiler

Application
Executable

***The NesC Language: A Holistic Approach to Network of Embedded Systems. David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer,
and David Culler. Proceedings of Programming Language Design and Implementation (PLDI) 2003, June 2003.

4

CSEP567 TinyOS 13

Commands

 Commands are issued with “call”

call Timer.start(TIMER_REPEAT, 1000);

 Cause action to be initiated
 Bounded amount of work

 Does not block

 Act similarly to a function call
 Execution of a command is immediate

CSEP567 TinyOS 14

Events

 Events are called with “signal”

signal ByteComm.txByteReady(SUCCESS);

 Used to notify a component an action has occurred
 Lowest-level events triggered by hardware interrupts
 Bounded amount of work

 Do not block
 Act similarly to a function call

 Execution of a event is immediate

CSEP567 TinyOS 15

Tasks

 Tasks are queued with “post”
post radioEncodeThread();

 Used for longer running operations
 Pre-empted by events

 Initiated by interrupts
 Tasks run to completion
 Not pre-empted by other tasks
 Example tasks

 High level – calculate aggregate of sensor readings
 Low level – encode radio packet for transmission, calculate CRC

CSEP567 TinyOS 16

Components

 Two types of components in nesC:
 Module
 Configuration

 A component provides and uses Interfaces

5

CSEP567 TinyOS 17

Module

 Provides application code
 Contains C-like code

 Must implement the ‘provides’ interfaces
 Implement the “commands” it provides
 Make sure to actually “signal”

 Must implement the ‘uses’ interfaces
 Implement the “events” that need to be handled
 “call” commands as needed

CSEP567 TinyOS 18

Configuration

• A configuration is a component that "wires" other
components together.

• Configurations are used to assemble other
components together

• Connects interfaces used by components to
interfaces provided by others.

CSEP567 TinyOS 19

Interfaces

 Bi-directional multi-function interaction channel between two
components

 Allows a single interface to represent a complex event
 E.g., a registration of some event, followed by a callback
 Critical for non-blocking operation

 “provides” interfaces
 Represent the functionality that the component provides to its user
 Service “commands” – implemented command functions
 Issue “events” – signal to user for passing data or signalling done

 “uses” interfaces
 Represent the functionality that the component needs from a provider
 Service “events” – implement event handling
 Issue “commands” – ask provider to do something

CSEP567 TinyOS 20

Application

 Consists of one or more components,
wired together to form a runnable program

 Single top-level configuration
that specifies the set of components in the application
and how they connect to one another

 Connection (wire) to main component to start execution
 Must implement init, start, and stop commands

6

CSEP567 TinyOS 21

Commands, Events, and Tasks

{
...
 status = call CmdName(args)
...
} command CmdName(args) {

...
return status;
}

{
...
 status = signal EvtName(args)
...
}

event EvtName (args) {
...
return status;
}

{
...
post TskName();
...
}

task void TskName {
...
}

CSEP567 TinyOS 22

Interfaces can fan-out and fan-in

 nesC allows interfaces to fan-out to and fan-in from multiple components
 One “provides” can be connected to many “uses” and vice versa
 Wiring fans-out, fan-in is done by a combine function that merges results

implementation {
 components Main, Counter, IntToLeds, TimerC;

 Main.StdControl -> IntToLeds.StdControl;
 Main.StdControl -> Counter.StdControl;
 Main.StdControl -> TimerC.StdControl;

result_t ok1, ok2, ok3;
….
ok1 = call UARTControl.init();
ok2 = call RadioControl.init();
ok3 = call Leds.init();
….
return rcombine3(ok1, ok2, ok3);

Fan-out by wiring

Fan-in using rcombine
- rcombine is just a simple

logical AND for most cases

CSEP567 TinyOS 23

configuration CntToLeds {
}
implementation {
 components Main, Counter, IntToLeds, TimerC;

 Main.StdControl -> IntToLeds.StdControl;
 Main.StdControl -> Counter.StdControl;
 Main.StdControl -> TimerC.StdControl;
 Counter.Timer -> TimerC.Timer[unique("Timer")];
 Counter.IntOutput -> IntToLeds.IntOutput;
}

TimerC.nc IntToLeds.nc

Timer.nc IntOutput.ncStdControl.nc StdControl.nc

Example

IntOutput.ncTimer.nc

StdControl.nc

Counter.nc

StdControl.nc

Main.nc

CSEP567 TinyOS 24

Controlling the Hardware in TinyOS
in tos/platform/mica2dot/hardware.h: you have
TOSH_ASSIGN_PIN(INT0, D, 0);

#define TOSH_ASSIGN_PIN(name, port, bit) \
static inline void TOSH_SET_##name##_PIN() {sbi(PORT##port , bit);} \
static inline void TOSH_CLR_##name##_PIN() {cbi(PORT##port , bit);} \
static inline int TOSH_READ_##name##_PIN() \
 {return (inp(PIN##port) & (1 << bit)) != 0;} \
static inline void TOSH_MAKE_##name##_OUTPUT() {sbi(DDR##port , bit);} \
static inline void TOSH_MAKE_##name##_INPUT() {cbi(DDR##port , bit);}

Gives these control mechanisms:
TOSH_SET_INT0_PIN();
TOSH_SET_INT0_PIN();
TOSH_CLR_INT0_PIN();
TOSH_READ_INT0_PIN();
TOSH_MAKE_INT0_OUTPUT();
TOSH_MAKE_INT0_INPUT();

7

CSEP567 TinyOS 25

LedsC.nc (partial)

module LedsC {
 provides interface Leds;
}
implementation
{
 uint8_t ledsOn;

 enum {
 RED_BIT = 1,
 GREEN_BIT = 2,
 YELLOW_BIT = 4
 };

 async command result_t Leds.init() {
 atomic {
 ledsOn = 0;
 dbg(DBG_BOOT, "LEDS: initialized.\n");
 TOSH_MAKE_RED_LED_OUTPUT();
 TOSH_MAKE_YELLOW_LED_OUTPUT();
 TOSH_MAKE_GREEN_LED_OUTPUT();
 TOSH_SET_RED_LED_PIN();
 TOSH_SET_YELLOW_LED_PIN();
 TOSH_SET_GREEN_LED_PIN();
 }
 return SUCCESS;
 }

 async command result_t Leds.redOn() {
 dbg(DBG_LED, "LEDS: Red on.\n");
 atomic {
 TOSH_CLR_RED_LED_PIN();
 ledsOn |= RED_BIT;
 }
 return SUCCESS;
 }

 async command result_t Leds.redOff() {
 dbg(DBG_LED, "LEDS: Red off.\n");
 atomic {
 TOSH_SET_RED_LED_PIN();
 ledsOn &= ~RED_BIT;
 }
 return SUCCESS;
 }

 async command result_t Leds.redToggle() {
 result_t rval;
 atomic {
 if (ledsOn & RED_BIT)

rval = call Leds.redOff();
 else

rval = call Leds.redOn();
 }
 return rval;
 }

 ...

FINAL PROJECT

Audio Notes

CSEP567 TinyOS 27

As the tines move back and forth they exert pressure on the air around them.
(a) The first displacement of the tine compresses the air molecules causing high
pressure.
(b) Equal displacement of the tine in the opposite direction forces the molecules to
widely disperse themselves and so, causes low pressure.
(c) These rapid variations in pressure over time form a pattern which propogates
itself through the air as a wave. Points of high and low pressure are sometimes
reffered to as ’compression’ and ’rarefaction’ respectively.

What is Sound?

(a) compression (b) rarefaction (c) wave propagation of a tuning fork
 as seen from above

CSEP567 TinyOS 28

The sine wave or sinusoid or sinusoidal signal is probably the most commonly
used graphic representation of sound waves.

Pressure or density
of air molecules;
’Amplitude’ in
deciBels

0

+ 1

-1

Time in seconds

10.5

high pressure
or ’compression’

low pressure
or ’rarefaction’

Sine Waves

8

CSEP567 TinyOS 29

Amplitude

•Amplitude describes the size of the pressure variations.
•Amplitude is measured along the vertical y-axis.
•Amplitude is closely related to but not the same as!!!, loudness.

(a) Two signals of equal frequency and
 varying amplitude

(b) Two signals of varying frequency and
 equal amplitude

CSEP567 TinyOS 30

Amplitude Envelope

Attack Decay Sustain Release

The amplitude of a wave changes or ’decays’ over time as it loses energy.

These changes are normally broken down into four stages;
Attack , Decay, Sustain and Release.

Collectively, the four stages are described as the amplitude envelope.

100 200 400300 500 600 700

0

0.2

0.4

0.6

0.8

0x0200
0x01FF

0x0000

0x03ff

