CSE P567 - Winter 2010

Lab 1 - Introduction to FGPA CAD Tools

This is a tutorial introduction to the process of designing circuits using a set of
modern design tools. While the tools we will be using (Altera’s Quartus II CAD
tools) are geared specifically to FPGAs, they are very similar to the tools used to
design ASICs (Application-Specific Integrated Circuits).

This tutorial will proceed as follows:

* Typical CAD Design Flow

* Opening and viewing a Quartus design project

* Editing Verilog files

* Compiling the project

* Programming the FPGA (downloading the circuit to the FPGA board)
* Testing the circuit

This tutorial is derived from a longer and more detailed tutorial on the Altera
Quartus II design tools, which is available on the class Resources Web page. Some of
the screen shots may vary slightly based on the version of the tools being used.

Typical CAD Design Flow

Computer Aided Design (CAD) software makes it easy to implement a desired logic
circuit by using a pro- grammable logic device, such as a field-programmable gate
array (FPGA) chip. A typical FPGA CAD flow is illustrated in Figure 1.

1

Design Entry

Synthesis

|

Functional Simulation

No]
Design correct?

A Timing Analysis and Simulation

'

No

Timing requirements met?

Programming and Configuration

Figure 1 - Typical CAD Design Flow

The CAD flow involves the following steps:

Design Entry - the desired circuit is specified either by means of a schematic
diagram, or by using a hardware description language, such as Verilog or VHDL. We
will be using Verilog in this course.

Simulation - the Verilog/schematic version of the circuit is simulated to verify its
functional correctness; this simulation does not take into account any timing or
synthesis issues

Logic Synthesis and Mapping - the entered design is synthesized into a circuit
comprised of combinational logic and registers. The final logic circuit must be
mapped to the logic and register resources available on the FPGA. This design is
optimized as much as possible to reduce the circuit size and increase performance.
The resulting circuit is often called a “netlist”.

Functional Simulation - the synthesized circuit is tested to verify its functional
correctness; this simulation does not take into account any timing issues. This step
is usually omitted under the assumption that the logic synthesis step is correct.

Place and Route - the CAD Fitter tool determines the placement of the logic
elements (LEs) defined in the netlist into the LEs in an actual FPGA chip; it also
chooses routing wires in the chip to make the required connections between specific
LEs

Timing Analysis - propagation delays along the various paths in the fitted circuit
are analyzed to provide an indication of the expected performance of the circuit. If
the circuit does not meet performance goals, then the circuit must modified to
reduce delay, or the tools re-run with a higher level of optimization (and
correspondingly longer run time).

Timing Simulation - the fitted circuit, which includes logic and wire delays, is
simulated to verify both its functional correctness and timing.

Programming and Configuration - the designed circuit is implemented in a
physical FPGA chip by programming the configuration switches that configure the
LEs and establish the required wiring connections. This is done by downloading the
“bit-file” generated by the CAD tools to the FPGAs.

The design process for ASICs is slightly different. The logic synthesis tools target the
library of logic cells available for the ASIC technology, and placement and routing
has more flexibility since the chip is being made from the ground up, not using an
already pre-fabricated FPGA. But the biggest difference is that the resulting design
“bit-file” is sent to a foundry to be made into a chip, which takes several months and
millions of dollars, not the 1 second download into a $20-$200 FPGA.

In this tutorial, we will not cover simulation - this will be covered in a later lab
assignment. We will also give you a complete circuit design for a camera pipeline to
start with. Later you will be modifying this design by editing and/or adding Verilog
files.

Getting Started

Each logic circuit designed with Quartus II software is called a project. Like a
software project, a Quartus project typically has several design files. In addition, the
project also keeps track of tools setting, pin assignments, etc. The software works on
one project at a time and keeps all information for that project in a single directory
(folder) in the file system. In this tutorial, you will use a project that we have
created. The process of creating a new project is described in the full Quartus II

Tutorial, but you won'’t need that for this class. (Creating a project involves making
a new directory, importing the design files you need, importing pin assignment and
setting the synthesis options.)

To begin, copy the cameraPipeline folder from the course directory to your
directory. Start the Quartus II software. You should see a display similar to the one
in Figure 2. A list of recent projects appear in the start window (after you have been
using Quartus). To open a new project, you can either click the Open Existing
Project button, or go to the File menu and use “Open Project”. After selecting the
“Open Existing Project” button, navigate to your copy of the camaraPipeline folder
and open the .qpf file.

@ QuartusT o|[@ =
File Edit View Project Assignments Processing Tools Window Help

DEEHG & @ o~ M @VE T >V 0D 0[O0 |40

Project Navigator - x

Entity

& Compilation Hierarchy

Getting Started With Quartus® Il Software

QUARTUS'II

~ ByHisrarchy | B Files | 87 Design Units |

Status

[Moduie | Progress % [Time & | Start Designing Start Learning
Designing with Quartus Il software
requires a project
. Open Interactive Tutorial
Tasks - X
Flow: |Compilation ~| Open Existing Project

Task & [T~ Open Recent Project:
- e Desig 1ab7
1ab7

1ab6 @ ViewQuartusil
1ab6 Information

Web links:

e - S . _ _ 5 Documentation
!) iy Fonebemer) St [ND[SRYA, ®

’: Type |Message I~ Don't show this screen again
% System Processing }, Estialnfo)\ Info)\ Warning)\ Cilical Warning A Ertor), Suppressed)\ Flag /
== 2| | [Focst =
For Help, press F1 Idie
@ - 0G] cwow |

Figure 2 - Project Start Window

Quartus now reads in all the files associated with your project. Click on the Files tab
in the Project Navigator to see a list of all the Verilog files in this project. (See Figure
3). As you will see, this is quite a large project, but don’t let that worry you. We will

be examining and modifying a few of these files as we are studying hardware design
and understanding how Verilog works. We will be ignoring most of them; however,
feel free to take a look at them if you are really interested in how the entire pipeline

is constructed.

File Edit View Project Assignments Processing Tools Window Helg

D g lab7

Project Navigator . x

{3 Files -

- 300 fiter.v

v
;b9 cameraPipeline.v
§be LCM_PLLv
3b° bayer2rgb.v
- gb¢ camera.v
- gb display.v
3be displayControl.v
ibe ffo24.v
oo fifo24int.v
b9 fifo33.v
ibe fifo33int.v
;b2 frame_counter.v
- ab¢ frameBuffer.v
- abd 12C_CCD_Config.v v
Hierarchy] Files] & Design Unils]

Status - X
Module | Progress 7 [Time & |
Tasks %
Flow: | Compilation ~|
Task & IT &
+ [W Compile Design ol
v & W Analysis & Synthesis
i +[_] Edit Settings

Figure 3 - The Project Navigator Files tab lists all the design files

We will not be using most of the tools and options available in Quartus. We will only
be editing Verilog files, compiling them and downloading the results into the FPGA.
Feel free to look around to see the commands and tools that are available.

Note that there is a simulator as part of Quartus, but we will not be using it. Instead,
in an upcoming lab, we will be using ModelSim, an industry-standard simulator
from Mentor.

Double-click on the filter.v file in the Project Navigator. This will open the Verilog
file (see Figure 4). You don’t have to understand how Verilog works yet, but it is
pretty easy to see what this module does. It has red, green and blue inputs, which
are passed along to the red, green and blue outputs, unless the enable input is set to
1. In this case, the outputs are all set to 0. Each of these values is an 8-bit unsigned
number. It turns out that this enable signal is connected to switch 4 on the board in
the cameraPipeline.v file, which is the top-level module in the circuit hierarchy.
(You can see this if you search for the filter module in cameraPipeline.v - around
line 300.)

Tools Window Help

M s @@@ 0> Wrod k@040
& I

e filter.y

= R e e e e e e 7
2 @|/* File filter.v
Y 3 * Ruthor: Carl Ebeling
ar 4 *
¥ 5 * Description: Filter.
6 * Revsions:
L 7 = 1.0 Initial design - 12/7/2009 - Carl Ebeling
= B KRR AR AR KRR AR KRR KR KA AR KRR R KKK R R KRR KR KRR R KRR KK KK IR KRR R KKK IR K /
&= 9 ‘timescale 1ns/1ns
10

A 11 Emodule filter(
% 12 input clk,
= 13 input enable,
A 14 input [7:0] pixelRedIn,
% 15 input [7:0] pixelGreenIn,
16 input [7:0] pixelBlueln,
i Lﬂ] 17 output [7:0] pixelRedCut,
— S is8 output [7:0] pixelGreenOut,
B 19 output [7:0] pixelBlueOut
TR 20):
21
225 22 assign pixelRedCut = enable ? 0 : pixelRedIn;
= T 23 assign pixelGreenOut = enable ? 0 : pixelGreenIn;
£ 24 assign pixelBlueOut = enable ? 0 : pixelBlueln;
1 | 25
- = 26 endmodule
- 27
2%

< n

Figure 4 - Window with the filter.v file open

Compiling the Project

Once you have finished entering a design (and have used simulation to be confident
that it works), you compile it, which uses logic synthesis, mapping, placement and
routing to generate a bit-file (like an executable) that we can download into the
FPGA. These tools are listed in the Tasks window (Figure 5). You can execute the
entire tool chain by double-clicking the Compile Design command. The Tasks
window will show you what tools are being run and the progress.

Tasks ax
Flow: |Comp|!anon v
Task & [T A

=l W Compile Design
E P Analysis & Synthesis
N] Edit Settings £
----- ER View Report
------ W Analysis & Elaboration
(- Partition Merge
@] Netlist Viewers
[#}p» Design Assistant (Post-Mapping)
[k 1/0 Assignment Analysis
i View Report
@ Pin Planner

[+ Early Timing Estimate

Figure 5 - The Tasks window lists the tool tasks in the order they are executed

This also appears at the top as the “Start Compilation” button (the purple “play”
button - these buttons are “mouse-over” buttons which displays their names.)

5 Window Help

MBS > D O 0 A e

@0 filter.v] 3@° cameraPipeline.v¥*

The Messages window will display compilation messages along with Warnings and
Errors. You may ignore Warnings (for now), but Errors will cause the compilation
to abort. But there won’t be any Errors unless you happened to change something
in the project. Compiling the circuit will take 5 to 10 minutes - be patient and take
comfort in the fact that really big FPGAs can take many hours for this compilation

process!

Tasks - x

I::‘“: ation _]

Task &
=4 = >
=

m

x
1
m

F FFHH
oot

+ [+

N
|

System (4])\Plocessing (249) A Extra Info)\ Info (104))_ Warning (145) }\ Critical Warning)\Enor)\ Suppressed (4])\Flag /

essages

1

t |Message: 0 of 427 _I 4‘ [Location

Figure 6 - The messages window displays the compiler messages. Note the tabs.

I

Before we can run the compiled circuit, we need something to run it on.

The Demo Board

The Altera DE-1 demo board has an Altera Cyclone FPGA with about 20,000 LUTs
(we’ll talk about these later). Also on the board are memories, clocks, lights,
switches, buttons and interfaces to all sorts of devices. Our project is a camera
pipeline, which connects to a camera on the input end and to an LCD display on the

output end. Since the camera and LCD display have different pixel formats, frame
sizes and frame rates, we need to insert hardware that performs the appropriate
conversions. We can also process the images as they pass through the pipeline. For
example, in a later lab, we will design an adaptive thresholding filter that responds
to the ambient light.

Ty
O
|
LY

)
HaTery

LI
i)
www.terasic.com z i
Ee = E
ﬁr!

9.191

L 1) u: 8" vm

nm:& nmiﬂaa .

MO
| B .
£ llllllllllllllIII||IIIIIIII ml"‘gg
lt!l "2 l(”.t) L) RII g
AR
€20 ™© en

o ez o w0 Byt ISSTESAR ﬁmummu 2

: ;m bk it H«' K%]HH' m *iﬁ LT n W - o

SRAM 512KB T OTASH AN ieng

il!lll! Ii o

T
[} ‘ ‘ﬁ’ "ﬁ' Ff7 FIFFaaN ﬁ‘ []
®

ffT.Q@QH

Figure 7 - Altera DE-1 Demo Board

To set up the board, plug in the power adaptor (Figure 7, top left) and connect it to
your computer via the USB cable (top left). (The board will actually run off the USB
power if the design doesn’t draw too much power). There are 4 pushbuttons (blue
lower right) and 10 switches (lower left). Pushbutton 0 is usually reserved for reset.

On the right side of the board, you will see two connectors labeled GPIO0 and GPIO1.
The inside connector is used to connect the LCD display to the board, and the
outside connector is used for the camera. (See Figure 8 and Figure 9.)

Figure 8 - LCD Display plugged into the inside connector

Figure 9 - Camera plugged into the outside connector

You are now ready to turn your board on. This executes a pre-loaded circuit that
will flash lights and cycle numbers through the 7-segment displays.

Downloading the Circuit

To download the circuit into the FPGA, click the Program Device command at the
end of the Task window. (Figure 10) This also appears at the top as the
“Programmer” button (374 from right).

Status

Module | Progress % [Time & |

Full Compilation 00:08:14
Analysis & Synthesis 00:03:21
170 Assignment Analysis 00:00:50

Fitter 00:02:22
Assembler LUt | 00:00:37

00:01:04
wuiulius

Classic Timing Analyzer 100 %

&

Tasks

Flow: ICompi\atxon

Task &

28 Technology Map Viewer (Post-Fitting)
S Desian Assistant (Post-Fitting)
i[T] Edi Settings

g View Report

programming files)

Timing y
i) Edt Settings
BB View Report

ANAN
vy

P de (E} TimeQuest Timing Analyzer
[+ e EDA Netlist Writer
@ Program Device (Open Programmer)

< I

»

m

=

This will bring up the following window:

@ Quartus II - Z:/ebeling/Documents/Courses/csed67/Instructor/cameraPipeline_v0/1ab7 - |ab7 - [lab7.cdf]

File Edit Processing Tools Window

2]

&, Hardware Setup... USB-Blaster [USB-0]

[” Enable realtime ISP to allow background programming (for MAX || devices)

W Start |

Figure 10 - The Program Task command is the last task in the Task window

Mode: [JTAG

LI Progress: 0%

| Device | Checksum | Usercode

Program/
Configure

Blank- Security

Examine

b Stop
Auto Detect
X Delete
(2 Add File...

Change File

) Save File...

(2 Add Device...

U Up

) Down

For Help, press F1

EP2C20F484 00BEESC2 FFFFFFFF

Verify Check Bit |Erase
O O

ISP
CLAMP
O

CAP

(If the entry next to Hardware Setup says “No Hardware”, then either your computer
is not connected to the board via the USB cable or you simply have to specify the
hardware to use. To do this, click on the “Hardware Setup” button, and select “USB-
Blaster” from the drop down menu.)

10

Now if you click the “Start” button, the bit-file created when you compiled the
project is downloaded into the FPGA. The circuit will start running, but you should
press Button 0 on the board, which is the reset button for the circuit. All the
switches should be off (down).

Try toggling switch 7 - what happens?

Now toggle switch 6 - what happens? Remember what the filter.v module did?

Changing and Re-Compiling Your Circuit

Now that you know how to load a project, edit files, compile and download the
result to the board, you are ready to change the design. Open up the filter.v file,
which describes one of the modules in the pipeline. The module as provided
implements a simple on/off feature using switch 6.

Change this module to do something more interesting, for example:

* Display a gray-scale version of the image

* Display a false-color version of the image (permute the colors)
* Display a thresholded black/white version of the image

* Your own idea

[know that you don’t know Verilog, but you can see that the syntax is similar to C
and if you just stick to changing the assign statements, you don’t need to know
anything else. But if you want more, just ask us.

Once you have made the change, re-compile your circuit (fixing any Errors that
arise) and download to the board. Demo your modified design to one of the
instructors.

11

