CSE P567 - Winter 2010 Name

Lab 3 — Adding a Frame Counter and Imaging Threshold

Please turn in this sheet with the TA signatures along with printouts of your
frame counter and threshold filter designs.

Overview

In this lab you will add a frame counter module to the camera pipeline, which counts
the camera frames as they pass by and displays a frame number on the 7-segment
displays. You will also modify the pipeline to display a 1-bit thresholded image.

Step 1 — Frame Counter Simulation

For homework assignment #2, you designed and simulated a circuit that
implements a frame counter. First, demonstrate the frame counter simulation to the
TA.

Frame Counter Simulation Signoff TA

Step 2 — Frame Counter Integration

Now you must integrate the frame counter into the remainder of the camera
pipeline. This pipeline already instantiates the frame counter module in
frame_counter.v, which is empty. Replace this file with your own files. Make sure
that the call to frame_counter in cameraPipeline.v matches your interface. For
example, you may have to change the argument names to match your interface.

Now compile and download the modified camera pipeline project and test to see
that it works correctly on the FPGA board.

Frame Counter Demo Signoff TA




Step 3 — 1-bit Thresholded Image

In the next lab, you will design an adaptive filter that adjusts the image according to
the current lighting. You will design this filter in the homework assignment and
then test/debug/modify it in the next lab session.

As a way of getting started, implement a simple filter in the style of the first lab
assignment. First, convert RGB to grayscale using the following equation: Lum =.30
Red + .59 Green + .11 Blue. Using this grayscale value, implement a threshold filter:
for values less than or equal the threshold, the output value is black, and for values
greater than the threshold, the output value is white. You may choose your own
threshold value.

1-bit Thresholded Image Signoff TA

Step 4 — Adaptive 1-bit Thresholded Image

The threshold value in the previous step was arbitrary whereas it should be a
function of the image itself. We will assume that images don’t change much from
one frame to the next and will use the average pixel value of one frame as the
threshold value for the next frame. To do this, you need to accumulate the pixel
values for an entire frame, and then compute the average at the end of the frame.
This average is then saved and used as the threshold value for the next frame, while
a new average is computed using the new frame.

There are two very important things you need to know. First, the bayPixelValid
signal is asserted (i.e. set to 1) only if the pixel value is valid on the current clock
cycle. Only valid pixels should be averages of course. Second, the signal
“ccdNewFrame” is asserted for one clock cycle after one frame ends and before the
next frame begins. You should use this signal to compute and save the average pixel
value as the threshold value for the next frame, and to clear the accumulator in
preparation for the next frame.

Adaptive Thresholded Image Progress Checkoff TA

(This part of the Lab may be completed in the next Lab period.)



