CSE P567 - Winter 2010 Name

Lab 6/Homework 6 — Getting Started with the Arduino Board

You should complete the first 2 parts in Lab (by 9:30PM), and the rest as a
homework assignment, which you will demo in the next Lab. There will be a
small (10%) penalty for late turnin.

Overview

In this lab you will start using your Arduino board with the Arduino IDE and
programming language, which is essentially C with some extensions to support
embedded systems programming.

Part 1 — First Circuit

The Arduino home page http://arduino.cc/en/Guide/HomePage has instructions on
how to download and use the Arduino IDE. (There is a ton of information on the
Arduino Web site that you should be take advantage of.) Follow these instructions
to load the IDE on your home machine. The IDE is already installed on the Lab
computers. To use the Lab machines, you will need to install the serial drivers when
you login - follow the instructions on the Lab Web page.

The last step of the startup instructions is to compile, download and execute the first
program, Blink, which simply blinks the light on the Arduino board. Once you have
this program running, modify it so that it blinks alternately slow (1 per sec) and fast
(4 per sec).

Simple Blinking Light Demo TA Date

Part 2 — Tri-Color LEDs

Install a tri-color LED on your proto-board. Here is a figure showing this LED:

Common Anode
- e »
‘I 1
50 )
3
‘ ‘
oo
59
1. Green
2. Bluo
3. Red All dimensions in millimeters
4. Common Anode Tolerance is +/- 0.16 mm




The datasheet for this tri-color LED is linked to the Lab Web page. If you look at
that, you will see that the specs are different for the three colors and thus we have to
wire them up differently. The graphs show how brightness varies with current -
let's assume that the LEDs will be more or less equally bright with the same current
and we'll pick a value of 7.5mA. To get this current, we will place a resistor in series
with the LED. We all know that V = IR and we need to solve for R to get the right
current. However, there is a voltage drop across the LED so the voltage drop across
the resistor is 5v - Vdrop, and the equation for the resistor is:

R = (5v - Vled)/7.5mA

Vled is about 3.5v for the blue and green LEDs and 2v for the red LED which gives us
values of 2000hms for the blue and green LEDs and 400ohms for the red LED. Of
course, our assumption doesn’t really hold, so if you want a true white when all
three LEDs are on, you may need to adjust these resistances. (360ohms for the red
LED seems to work pretty well.)

Connect the Common Anode to the +5v supply on your protoboard, and connect the
Red, Blue and Green pins to the Arduino digital pins 7, 8, and 9 through 200, 100,
and 100 ohm resistors respectively. Do this wiring with the board disconnected
from power. We will have wire and wire cutters/strippers available for you to use.
Feel free to cut yourself some extra wires to take home with you. If you have any
question on how to do this, you can take a look at our circuit board.

You will be using digital output pins 7, 8, and 9 to drive these LEDs. Note that the
common anode is connected to +5v, which means that current will flow through the
LED when the pin is at Ov (LOW). Keep this in mind when writing your program.

Write a program that cycles through the 3 colors: red, green, and then blue, with
each on for 1 sec.

Tri-Color LED Demo TA Date




Part 3 — Program-Driven PWM Control of Tri-Color LEDs

Write a program that uses program-driven pulse-width modulation to cycle through
the three colors, but this time each color ramps from off to full brightness to off as
illustrated in the following graph. Each color should be given 1 sec. to ramp up and
then back down again. A pulse-width modulated signal is essentially a clock that is
fast enough that the eye cannot see the pulses. The intensity of the light depends on
the “duty cycle” of the clock - the frequency is constant. The duty cycle is the
percentage of the clock period that the clock is high and ranges from 0% (no high
pulse) to 50% (normal clock signal) to 100% (always high). Your program should
generate a clock signal with a frequency of about 10KHz, and vary the duty cycle to
ramp the brightness up and down. Use the delayMicroseconds() function or
micros() function to do this. You must use the digitalWrite() function to implement
this program.

Program-Driven PWM Demo TA Date

Part 4 — Analog PWM Control of Tri-Color LEDs

We will now look at using the analog output pins to drive these LEDs. Some of the
digital pins can be used in analog output mode, which really means PWM mode
using PWM hardware built into the ATmega pins.

First re-connect the tri-color LED to three analog output pins. Now, re-write your
program to use the analogWrite() function to drive these pins with a 10-bit value.
The pins will convert this value automagically into a PWM signal, which is a whole
lot easier than using a programmed method.

Analog PWM Demo TA Date

Part 5 — Using the Serial Monitor to Control LEDs

There is a Serial library (actually a class) that allows you to communicate with the
PC via the USB after your program starts running. Take a look at the program on the
next page to see a good example of using Serial. Use the Serial Monitor built into the
IDE to enter characters and display the results.

Now write a program to control your tri-color LED via the serial interface. Use a 2-
character command where the first character indicates which light to program (0-2
say) and the second character indicates the intensity, from 0-9 say. Your program
should echo a long version of the command as a confirmation. (You may embellish
your program if you like of course.)

Serial Monitor Control Demo TA Date




~
* ¥ X

* % X ok X X %

*

*/

Serial Read Blink

Turns on and off a light emitting diode(LED) connected to digital
pin 13. The LED will blink the number of times given by a
single-digit ASCII number read from the serial port.

Created 18 October 2006
copyleft 2006 Tod E. Kurt <tod@todbot.com>
http://todbot.com/

based on "serial read advanced" example

int ledPin = 13; // select the pin for the LED
int val = 0; // variable to store the data from the serial port
void setup() {

}

pinMode(ledPin,OUTPUT) ; // declare the LED's pin as output
Serial.begin(9600); // connect to the serial port
void loop () {
val = Serial.read(); // read the serial port
// if the stored value is a single digit, blink the LED that number
if (val > '0' && val <= '9' ) {
val = val - '0'; // convert from character to number

for(int i=0; i<val; i++) {
Serial.println("blink!");
digitalWrite(ledPin,HIGH);
delay(150);
digitalWrite(ledPin, LOW);
delay(150);

}

//Serial.println();

}



