## Lecture 2 - Combinational Circuits and Verilog

CSE P567

Example: $r 1=r 2+r 3$


- Registers
- Adder function (combinational logic)
- Wires

Example: r1 = r2 +r3

- We need:
- Registers

- adder function (combinational logic)
- Wires
- Selection function
- We won't always want r2 and r3


## Combinational Logic

- Functions with no state
- Output is a function of the inputs only - no history
- add
, subtract
b multiply
count-ones
- FSM next state function
- All computation is done in binary
- Primitive circuit values are on/off, Vdd/GND, current/no current


## Review: Binary Encoding of Numbers

- Unsigned numbers
- $b_{n-1} 2^{n-1+} b_{n-2} 2^{n-2+\ldots+} b_{0} 2^{0}$
- $2 s$ complement encoding of signed numbers
- $-b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2+\ldots+} b_{0} 2^{0}$
- Same adder works for both unsigned and signed numbers
- To negate a number, invert all bits and add 1
- As slow as add in worst case


## Binary Addition

- Simple addition algorithm works:



## Binary Addition

- Simple addition algorithm works:

| 1 | 1 | 0 | 0 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 1 | 0 | +6 |  |
|  | 1 | 1 | 0 | 1 | -3 |  |
|  |  |  |  |  |  | -1 |
|  | 0 | 0 | 1 | 1 | 3 |  |

- Note: we drop the carry out of the high-order bit
- Each bit computes the same simple functions
- Sum $=f(a, b, C i n)$
- Cout $=f(a, b, C i n)$
$\rightarrow$ Ripple carry adder


## Ripple-Carry Adder



- Each bit computes the same simple functions
- Sum $=f(a, b, C i n)$
- Cout $=f(a, b, C i n)$
- If we can write the function as a Boolean equation, we can generate the circuit


## Combinational Logic Design

- We can translate a Boolean function into logic gates
- AND, OR, INVERT
- e.g. Homework problem
g0 = r0
> $\mathrm{gl}=\mathrm{gl} * \mathrm{r} 0^{\prime}$
' $\mathrm{g} 2=\mathrm{g} 2$ * r0' * rl'



## Homework Problem

- Homework problem
- Gates grow linearly
- Keep to <= 4 inputs



## Homework Problem

- Homework problem
" "carry" chain of ORs
- "multi-level logic"
- linear delay
- can we do better?
- Yes we can!
- Any ideas?



## Combinational Logic Design

- Finding the Boolean function? (e.g. Sum, Carry)
- Most functions are not obvious
- "Case analysis" always works
- Enumerate all possible input cases
- Determine value for each case
- Convert to Boolean equation
- (Not reasonable for large functions - more later)


## Case Analysis for Sum and Cout

- There are 3 inputs and thus 8 different possibilities

| a | b | Cin | Cout | Sum |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | l | 0 | 0 |
| 0 | 0 | 1 | $\mid$ |  |  |
| 0 | 1 | 0 | $\mid$ |  |  |
| 0 | 1 | 1 | 1 |  |  |
| 1 | 0 | 0 | 1 |  |  |
| 1 | 0 | 1 | $\mid$ |  |  |
| 1 | 1 | 0 | $\mid$ |  |  |
| 1 | 1 | 1 | I |  |  |

## Case Analysis for Sum and Cout

- There are 3 inputs and thus 8 different possibilities

| a | b | Cin | Cout | Sum |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\mid$ | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | $\mid$ | 1 | 0 |
| 1 | 1 | 0 | $\mid$ | 1 | 0 |
| 1 | 1 | 1 | $\mid$ | 1 | 1 |

- Also known as a 3-2 counter


## Truth Table to Boolean Function

- Straightforward process

|  | a | b | c |  | Cout | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \cdot \overline{\mathrm{c}}$ | 0 | 0 | 0 |  | 0 | 0 |
| $\underline{a} \cdot \bar{b} \cdot \frac{c}{}$ | 0 | 0 | 1 |  | 0 | (1) |
| a | 0 | 1 | 0 |  | 0 | (1) |
| $\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}$ | 0 | 1 | 1 |  | (1) | 0 |
| - $\bar{c}$ | 1 | 0 | 0 |  |  | (1) |
| ${ }^{-}$ | 1 | 0 | 1 |  | (1) |  |
| $\mathrm{a} \cdot \mathrm{b} \cdot \overline{\mathrm{c}}$ | 1 | 1 | 0 |  | (1) | 0 |
| -b | 1 | 1 | 1 |  |  |  |

- Cout $=\bar{a} \cdot b \cdot c+a \cdot \bar{b} \cdot c+a \cdot b \cdot c+a \cdot b \cdot c$

Sum $=a \cdot \bar{b} \cdot c+a \cdot b \cdot c+a \cdot \bar{b} \cdot c+a \cdot b \cdot c$

## Canonical forms: Sum Of Products

- Truth table is the unique signature of a Boolean function
- Many alternative expressions may have the same truth table
- Canonical form
- standard form for a Boolean expression
- Sum-of-products form -
a.k.a. disjunctive normal form or minterm expansion


$$
F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}
$$

## Incompletely specified functions

- Example: binary coded decimal increment by I
- BCD digits encode the decimal digits $0-9$ in the bit patterns 0000 - 1001



## Regular Two-Level Logic

- Basis is canonical form
- Note notation for high-fanin gates



## This is a "Canonical" Description

- Exactly one truth table for a function
- Canonical "Sum of Products" equation
- This equation is in general not minimal
b e.g. Cout $=\bar{a} \bullet b \cdot c+a \cdot \bar{b} \cdot c+a \bullet b \cdot \bar{c}+a \bullet b \cdot c$
- Minimal equation:
- Cout $=a \cdot b+b \cdot c+a \cdot c$
- Much cheaper:
- 4 3-input ANDs + 1 4-input OR
b vs. 3 2-input ANDs + 1 3-input OR
- What about Sum?


## Sum

Sum $=\overline{\mathrm{a}} \bullet \overline{\mathrm{b}}{ }^{\bullet} \mathrm{c}+\overline{\mathrm{a}}{ }^{\bullet} \mathrm{b} \cdot \stackrel{\mathrm{c}}{ }+\mathrm{a} \bullet \overline{\mathrm{b}}{ }^{\bullet} \overline{\mathrm{c}}+\mathrm{a} \cdot \mathrm{b}^{\bullet} \mathrm{c}$

- Can we reduce this?
- Karnaugh map allows us to visualize the function
- Adjacencies allow minimization


Carry


- Sum cannot be minimized (with 2-level logic)


## Cheaper Sum - Multi-level Circuit

- 12 gate inputs vs. 16
- (ignore inverters)
- Slower (but smaller gates)



## Multiplexers/selectors

- Multiplexers/selectors: general concept
- $2^{n}$ data inputs, $n$ control inputs (called "selects"), I output
- used to connect one of $2^{n}$ inputs to the single output
- control signal pattern forms binary index of input connected to output
- e.g.2-I mux
$\mathrm{Z}=\mathrm{S}^{\prime} \mathrm{I}_{0}+\mathrm{SI}_{1}$

two alternative forms for a 2:1 Mux truth table


## Multiplexers/selectors

- Multiplexers/selectors: general concept
- $2^{n}$ data inputs, $n$ control inputs (called "selects"), I output
- used to connect one of $2^{n}$ inputs to the single output
- control signal pattern forms binary index of input connected to output
- e.g. 2-I mux
$\mathrm{Z}=\mathrm{S}^{\prime} \mathrm{I}_{0}+\mathrm{SI}_{1}$


> two alternative forms
 for a 2:1 Mux truth table

## Gate level implementation of muxes

- 2:I mux

, 4:I mux



## Multiplexers/selectors (cont'd)



## Cascading multiplexers

- Large multiplexers can be implemented by cascading smaller ones using a tree structure



## Decoders

- General idea:
" Convert a binary number into a "1-hot" number
b $n$ inputs (address)
- $2 n$ outputs
> enable input (optional)
$\square 0$-> all outputs 0



## Gate level implementation of decoders

| I:2 decoder


2:4 decoder


## Cascading decoders

- Use a tree structure
- cheaper than 2-level implementation
- 5:32 decoder
- Ix2:4 decoder
| $4 \times 3: 8$ decoders



## 2-Level Logic Minimization

- Important because of 2-level implementations
- PLAs - 1950s
- PALs - 1970s
- By-hand methods - Karnaugh maps
- Only for small functions
- Good for visualization
- Exact methods good up to 15 or so inputs
- I950's - Quine-McCluskey algorithm
- Heuristic methods for more than that
- I970's - Espresso


## Multi-Level Logic Minimization

- Factor function into smaller functions
- Smaller gates
- Fewer gates
- Deeper circuit - cost/performance tradeoff
- Needed for FPGAs and semi-custom ASICs
- Circuit libraries with "small" gates
- Developed in the 1980s and 90s
- Much more difficult problem than 2-level minimization
- Many different factoring methods


## Simple Factoring - Decomposition

- Shannon/Ashenhurst Decomposition
, $F(a, b, c, d, \ldots)=a^{\prime} F_{a=0}(b, c, d, \ldots)+a F_{a=1}(b, c, d, \ldots)$
- 2-I Mux



## Example

- $f(a, b, c, d, e)=a d '+b d e+a ' d e '+b d ' c '$


## Logic Synthesis

- Compiles HDL into gates
- I. Elaboration - parse HDL program into standard form
- 2. Logic optimization - minimize cost/maximize performance
- 3.Tech mapping - map optimized circuit to available library components
- May require "re-synthesis"
- 4. Physical Re-Synthesis - transform circuit when placing and routing
- Process is unpredictable


## Logic Synthesis

- Insulates us from the details
- Like a C or Java compiler
- But we need to understand the implications of what we write in HDL
- Just like in C or Java
- Each FPGA company has its own synthesis tool
- And Cadence, Synopsis, Mentor, ...


## Verilog Introduction

- Two ways to describe:
- Behavioral Verilog
b describe what a component does, not how it does it
- synthesized into a circuit that has this behavior
- Structural Verilog
- list of components and how they are connected
- just like schematics, but using text
- hard to write, hard to decode
b used to compose systems hierarchically from components


## Verilog by Example

- Ripple-Carry Adder

- We will describe the full-adder as a behavioral module
- We will connect these together in a higher-level component
full_adder module

```
module full_adder
        (input a,
        input b,
        input c,
        output sum,
        output carry);
    assign sum = a & ~b & ~c | ~a & b & ~c |
                ~a& ~b & c | a & b & c;
    assign carry = a & b | a & c | b & c;
endmodule
```


## assign statement

- A single assignment equation
- One logical function (possibly multiple-bit value)
- Each assignment is a process
- Runs in parallel with all other processes
- Order of assignments does not matter!
- Executes whenever an input changes
- Just like logic gates


## Verilog Operators

| Verilog Operator | Name | Functional Group |
| :---: | :---: | :---: |
| () | bit-select or part-select |  |
| () | parenthesis |  |
|  | logical negation negation reduction AND reduction OR reduction NAND reduction NOR reduction XOR reduction XNOR | Logical <br> Bit-wise <br> Reduction <br> Reduction <br> Reduction <br> Reduction <br> Reduction <br> Reduction |
| + | unary (sign) plus unary (sign) minus | Arithmetic Arithmetic |
| \{\} | concatenation | Concatenation |
| \{ $\}$ \} | replication | Replication |
| / | multiply divide modulus | Arithmetic Arithmetic Arithmetic |
| $+$ | binary plus binary minus | Arithmetic Arithmetic |
| $\begin{aligned} & \text { << } \\ & \gg \end{aligned}$ | shift left shift right | Shift Shift |

$\left.\begin{array}{|l|l|l|}\hline> \\ >= \\ <=\end{array} \quad \begin{array}{l}\text { greater than } \\ \text { greater than or equal to } \\ \text { less than } \\ \text { less than or equal to }\end{array} \quad \begin{array}{l}\text { Relational } \\ \text { Relational } \\ \text { Relational } \\ \text { Relational }\end{array}\right]$

## Alternative full_adder module

```
module full_adder
    (input a,
        input b,
        input c,
        output sum,
        output carry);
    assign { carry, sum } = a + b + c;
endmodule
```

- We add the 3 input bits together (count)
- The 2-bit result is assigned to the 2 -bit bus
- \{ carry, sum \}


## adder4 module

```
module adder4
    (input [3:0] a,
    input [3:0] b,
    output [3:0] sum);
wire carry0, carry1, carry2;
full_adder fa0(.a(a[0]), .b(b[0]), .c(0)
    .sum(sum[0], .carry(carry0));
full_adder fa1(.a(a[1]), .b(b[1]), .c(carry0)
    .sum(sum[1], .carry(carry1));
    full_adder fa2(.a(a[2]), .b(b[2]), .c(carry1)
    .sum(sum[2], .carry(carry2));
    full_adder fa3(.a(a[3]), .b(b[3]), .c(carry2)
    .sum(sum[3], .carry( ));
endmodule
```

- This module just wires together the full-adders
- Connects the processes together


## Verilog Data Types and Values

- Bits - value on a single wire
- 0,1
- X - don't care
- Z - undriven, tri-state
- Vectors of bits - busses
- A[3:0] - vector of 4 bits: A[3], A[2], A[1], A[0]
- Treated as an unsigned integer value by default
pe.g. A < 0 ??
- Can declare variables ad signed
- Concatenating bits/vectors into a vector
b.g. sign extend
$\mathrm{B}[7: 0]=\{\mathrm{A}[3], \mathrm{A}[3], \mathrm{A}[3], \mathrm{A}[3], \mathrm{A}[3: 0]\}$;
- $B[7: 0]=\{4\{A[3]\}, A[3: 0]\}$;


## Verilog Numbers

- 14 - ordinary decimal number
- -14-2's complement representation
- 12'b0000_0100_0110 - binary number with 12 bits
( $\_$is ignored)
- 3'h046 - hexadecimal number with 12 bits
- Verilog values are unsigned by default
beg. C[4:0] = A[3:0] + B[3:0];
- if $A=0 \mid I 0(6)$ and $B=I 0 I 0(-6)$
$C=10000$ not 00000
i.e. B is zero-padded, not sign-extended
- For maximum safety, declare length of all intermediates


## always block

- Contains a small program that is executed whenever an input changes
- A parallel process, just like an assign statement
- The block can make multiple assignments
- The program is executed sequentially
- The program describes the function computed by the block
- Program is interpreted at compile time to generate a circuit
- Combinational - takes no time
- Even though the program semantics are sequential


## Combinational always block

, always @(list_of_variables)
b block executes when any of the variables change
b easy to forget a variable
b we will not use this style
b always @(*)

- This means to execute the program if any input changes
- Just like an assign


## Alternative full_adder module

```
module full_adder
    (input a,
        input b,
        input c,
        output reg sum,
        output reg carry);
    always @(*) begin
        sum = a & ~b & ~c | ~a & b & ~c |
        ~a & ~b & c | a & b & c;
    carry = a & b | a & c | b & c;
    end
endmodule
```

- Order in the always block does matter
- Variables assigned in an always block must be declared as reg


## Verilog Variables

- wire
- variable used to connect components together
- inputs and outputs are wires by default
* outputs be declared as regs
- reg
- Any variable that is assigned in an always block
> cannot be assigned by an assign statement
* usually corresponds to a wire in the circuit
- is NOT a register in the circuit
- Important:
, The names wire and reg do not mean anything!


## Verilog if

- Same as C if statement

```
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
    (input [1:0] sel, // 2-bit control signal
        input A, input B, input C, input D,
        output reg Y);
    always @(*) begin
        if (sel == 2'b00) Y = A;
        else if (sel == 2'b01) Y = B;
        else if (sel == 2'b10) Y = C;
        else if (sel == 2'b11) Y = D;
    end
endmodule
```


## Verilog if

- Another way

```
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
    (input [1:0] sel, // 2-bit control signal
        input A, input B, input C, input D,
        output reg Y);
    always @(*) begin
        if (sel[0] == 0)
        if (sel[1] == 0) Y = A;
        else Y = B;
        else
        if (sel[1] == 0) Y = C;
        else Y = D;
    end
endmodule
```


## Verilog case

- Sequential execution of cases
- only first case that matches is executed (no break)
- default case can be used

```
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
    (input [1:0] sel, // 2-bit control signal
        input A, input B, input C, input D,
        output reg Y);
    always @(*) begin
        case (sel)
            2'b00: Y = A;
            2'b01: Y = B;
            2'b10: Y = C;
            2'b11: Y = D;
        endcase
    end
endmodule
```


## Verilog case

- Without the default case, this would ${ }^{\text {not }}$ * be combinational!
- Assigning $X$ to a variable means synthesis is free to assign any value

```
// Simple binary encoder (input is 1-hot)
module encode
    (input [7:0] A, // 8-bit input vector
        output reg [2:0] Y); // 3-bit encoded output
        always @(*)
            case (A)
            8'b00000001: Y = 0;
            8'b00000010: Y = 1;
            8'b00000100: Y = 2;
            8'b00001000: Y = 3;
            8'b00010000: Y = 4;
            8'b00100000: Y = 5;
            8'b01000000: Y = 6;
                8'b10000000: Y = 7;
                default: Y = 3'bX; // Don't care when input is not 1-hot
            endcase
endmodule
```


## Verilog for

- for is similar to $C$
- for statement is executed at compile time
- result is all that matters, not how result is calculated
// simple encoder module encode
(input [7:0] A, // 8-bit input vector output reg [2:0] Y); // 3-bit encoded output integer i; // Temporary variables for program only reg [7:0] test;
always @(*) begin
test $=8 b^{\prime} 00000001$;
$\mathrm{Y}=3^{\prime} \mathrm{bX}$;
for (i = 0; i < 8; i = i + 1) begin if (A == test) $Y=i ;$ test $=$ test $\ll 1$;
end
end
endmodule


## Another Behavioral Example

- Combinational block that computes Conway's Game of Life rule

```
module life
    (input self,
    input [7:0] neighbors,
    output reg out);
    integer count;
    integer i;
    always @(*) begin
        count = 0;
        for (i = 0; i<8; i = i+1) count = count + neighbors[i];
        out = 0;
        out = out | (count == 3);
        out = out | ((self == 1) & (count == 2));
    end
endmodule
```


## Summary: Verilog for Combinational Logic

- Two alternatives:
- assign statement - simple logic equation
, always block - allows complex program to describe function
- Each assign and always block compiles into a component
- Combinational function with some inputs and outputs
- All components operate in parallel, continuously
- If any input changes, the function is recomputed
- This may change the output
, Which will cause inputs of some components to change
- Just like a circuit made up of gates!


## Registers and Sequential Logic

- Registers are used to store values
- for sequencing
- e.g. $\mathrm{RI}=\mathrm{R} 2+\mathrm{R} 3$

$$
R 0=R I-R 4
$$

- Registers hold values while functions operate on them
* When result is ready, registers "latch" the new values
- Clock tells registers when to latch
- Clock is slow enough that functions have time to finish
- Only enabled registers latch new values
- All registers latch simultaneously
- e.g. shift register and swap


## Verilog Registers

- always @ (posedge clk)
- The block program executes only when the clk transitions from 0 to 1 (positive edge)
- All assignments in the block store values in a register
, These assignments should use <= - (easy to forget)
- All registered assignments happen at same instant
- Not sequentially determined
b = causes sequential assignments - not like registers!
- Examples
- shift register
- accumulator
- counter
- wavelet example


## Verilog by Example

- Simple 8-bit register with synchronous reset
- reset only has effect on rising edge of clock

```
module reg8
    (input reset,
    input CLK,
    input [7:0] D,
    output reg [7:0] Q);
    always @(posedge CLK)
        if (reset)
        Q <= 0;
        else
        Q<= D;
```

endmodule // reg8

## N-bit Register with Asynchronous Reset

- Example of parameterized module

```
module
(input reset,
input CLK,
input [N-1:0] D,
output reg [N-1:0] Q(;
parameter N = 8; // Allow N to be changed
always @(posedge CLK or posedge reset)
            if (reset)
            Q <= 0;
            else if (CLK == 1)
                Q <= D;
endmodule // regN
```


## Shift Register Example

```
// 4 register shift register
module shiftReg
(input CLK,
    input reset, // initialize registers
    input shift,
    input [7:0] Din, // Data input for load
    output [7:0] Dout);
    reg [7:0] D0, D1, D2, D3;
    assign Dout = D0;
    always @(posedge CLK) begin
        if (reset) begin
            D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
        end else if (shift) begin
            D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
        end
    end
```

endmodule // shiftReg

## FIR Filter Example

```
module fir
    (input CLK,
    input reset, // initialize registers
    input [7:0] Din, // Data input for load
    output reg [7:0] Dout);
    reg [7:0] D0, D1, D2, D3;
    localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1;
    always @(posedge CLK) begin
            if (reset) begin
            DO <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
        end else begin
            D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
            Dout <= C0 * DO + C1 * D1 + C2 * D2 + C3 * D3;
    end
end
endmodule // fir
```


## Case Study - Division by Constant

b e.g. gray $=($ red + blue + green $) / 3$

- Division is very expensive in general
- Area and Delay
- Much more so than multiplication
- Convert division to multiplication
- Multiply by the reciprocal
- e.g. (red + blue + green) * 0.33
- Floating-point??
- Also expensive!
- Key idea: multiply \& divide by $2^{n}$ is FREE

RGB to Grayscale

- $Y=0.3 * R+0.59 * G+0.11 * B$
- 1024 * $0.3=307.2$
- $1024 * 0.59=604.16$
- 1024 * $0.1 \mathrm{I}=112.64$
- $\mathrm{Y}=(307 * \mathrm{R}+604 * \mathrm{G}+113 * \mathrm{~B}) \gg 10$;
- This works for multiplying/dividing with any number with fractions
- Scale then re-scale


## Converting Division to Multiplication

- Increase precision until it's good enough
- FPGA has $18 \times 18$ multipliers - almost free
- Division by a variable?
- Table lookup of reciprocal
- Does not scale to large numbers
- Use iterative solutions

