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Example: r1 = r2 + r3 

  We need: 
  Registers 
  Adder function (combinational logic) 
  Wires 



Example: r1 = r2 + r3 

  We need: 
  Registers 
  adder function (combinational logic) 
  Wires 
  Selection function 

  We won’t always want r2 and r3 



Combinational Logic 
  Functions with no state 
  Output is a function of the inputs only – no history 

  add 
  subtract 
  multiply 
  count-ones 
  FSM next state function 

  All computation is done in binary 
  Primitive circuit values are on/off,  Vdd/GND, current/no 

current 



Review: Binary Encoding of Numbers 
  Unsigned numbers 

   bn-12n-1 + bn-22n-2 + . . . + b020 

  2s complement encoding of signed numbers 
  -bn-12n-1 + bn-22n-2 + . . . + b020 

  Same adder works for both unsigned and signed numbers 

  To negate a number, invert all bits and add 1 
  As slow as add in worst case 



Binary Addition 
  Simple addition algorithm works: 

  0 1 1 0  +6 
  1 1 0 1  -3 
  --------- 



Binary Addition 
  Simple addition algorithm works: 

  Note: we drop the carry out of the high-order bit 
  Each bit computes the same simple functions 

  Sum = f(a, b, Cin) 
  Cout = f(a, b, Cin) 
  Ripple carry adder 

1  1  0  0 

  0 1 1 0  +6 
  1 1 0 1  -3 
  --------- 
  0 0 1 1   3 



Ripple-Carry Adder 

  Each bit computes the same simple functions 
  Sum = f(a, b, Cin) 
  Cout = f(a, b, Cin) 

  If we can write the function as a Boolean equation, we can 
generate the circuit 



Combinational Logic Design 
  We can translate a Boolean function into logic gates 

  AND, OR, INVERT 

  e.g. Homework problem 
  g0 = r0 
  g1 = g1 * r0’ 
  g2 = g2 * r0’ * r1’ 



Homework Problem 
  Homework problem 

  Gates grow linearly 
  Keep to <= 4 inputs 



Homework Problem 
  Homework problem 

  “carry” chain of ORs 
  “multi-level logic” 
  linear delay 
  can we do better? 
  Yes we can! 
  Any ideas? 



Combinational Logic Design 
  Finding the Boolean function? (e.g.  Sum, Carry) 

  Most functions are not obvious 

  “Case analysis” always works 
  Enumerate all possible input cases 
  Determine value for each case 
  Convert to Boolean equation 
  (Not reasonable for large functions – more later) 



Case Analysis for Sum and Cout 
  There are 3 inputs and thus 8 different possibilities 

a  b  Cin| Cout Sum 
0  0  0  |   0   0 
0  0  1  | 
0  1  0  | 
0  1  1  | 
1  0  0  | 
1  0  1  | 
1  1  0  | 
1  1  1  | 



Case Analysis for Sum and Cout 
  There are 3 inputs and thus 8 different possibilities 

  Also known as a 3-2 counter 

a  b  Cin| Cout Sum 
0  0  0  |   0   0 
0  0  1  |   0   1 
0  1  0  |   0   1 
0  1  1  |   1   0 
1  0  0  |   0   1 
1  0  1  |   1   0 
1  1  0  |   1   0 
1  1  1  |   1   1 



Truth Table to Boolean Function 
  Straightforward process 

  Cout = abc + abc + abc + abc 

  Sum  = abc + abc + abc + abc 

a  b  c  | Cout Sum 
0  0  0  |   0   0 
0  0  1  |   0   1 
0  1  0  |   0   1 
0  1  1  |   1   0 
1  0  0  |   0   1 
1  0  1  |   1   0 
1  1  0  |   1   0 
1  1  1  |   1   1 

abc 
abc 
abc 
abc 
abc 
abc 
abc 
abc 
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A  B  C  F  F' 
0  0  0  0  1 
0  0  1  0  1 
0  1  0  0  1 
0  1  1  1  0 
1  0  0  1  0 
1  0  1  1  0 
1  1  0  1  0 
1  1  1  1  0 

        011       100         101         110        111 
F = A'BC + AB'C' + AB'C + ABC' + ABC 

F' = A'B'C' + A'B'C + A'BC' 

Canonical forms: Sum Of Products 
  Truth table is the unique signature of a Boolean function 
  Many alternative expressions may have the same truth table 
  Canonical form 

  standard form for a Boolean expression  
  Sum-of-products form –  

a.k.a. disjunctive normal form or minterm expansion 
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A  B  C  D  W  X  Y  Z 
0  0  0  0  0  0  0  1 
0  0  0  1  0  0  1  0 
0  0  1  0  0  0  1  1 
0  0  1  1  0  1  0  0 
0  1  0  0  0  1  0  1 
0  1  0  1  0  1  1  0 
0  1  1  0  0  1  1  1 
0  1  1  1  1  0  0  0 
1  0  0  0  1  0  0  1 
1  0  0  1  0  0  0  0 
1  0  1  0  X  X  X  X 
1  0  1  1  X  X  X  X 
1  1  0  0  X  X  X  X 
1  1  0  1  X  X  X  X 
1  1  1  0  X  X  X  X 
1  1  1  1  X  X  X  X 

off-set of W 

these inputs patterns should  
never be encountered in practice  
– we "don't care" about associated  
output values, and this can be  
exploited in minimization 

don't care (DC) set of W 

on-set of W 

Incompletely specified functions 
  Example: binary coded decimal increment by 1 

  BCD digits encode the decimal digits 0 – 9 in the bit patterns 
0000 – 1001 
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minterms 

AND plane OR plane 

Regular Two-Level Logic 

  Basis is canonical form 
  Note notation for high-fanin gates 



This is a “Canonical” Description 
  Exactly one truth table for a function 

  Canonical “Sum of Products” equation 

  This equation is in general not minimal 
  e.g. Cout = abc + abc + abc + abc 

   Minimal equation: 
  Cout = ab + bc + ac 

  Much cheaper: 
       4 3-input ANDs + 1 4-input OR 
  vs.  3 2-input ANDs + 1 3-input OR 

  What about Sum? 



Sum 
  Sum  = abc + abc + abc + abc 
  Can we reduce this? 
  Karnaugh map allows us to visualize the function 

  Adjacencies allow minimization 

  Sum cannot be minimized (with 2-level logic) 

0  1  0  1 

1  0  1  0 

0 

1 

AB 
A 

00 01 11 10 C 

B 

0  0  1  0 

0  1  1  1 

0 

1 

AB 
A 

00 01 11 10 C 

B 

Sum Carry 



Cheaper Sum – Multi-level Circuit 
  12 gate inputs vs. 16 

  (ignore inverters) 

  Slower (but smaller gates) 
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two alternative forms 
for a 2:1 Mux truth table 

functional form 

logical form 

S  Z 
0  I0 
1  I1 

Z = S' I0  + S I1 

Multiplexers/selectors 

  Multiplexers/selectors: general concept 
  2n data inputs, n control inputs (called "selects"), 1 output 
  used to connect one of 2n inputs to the single output 
  control signal pattern forms binary index of input connected to output 
  e.g. 2-1 mux 

I0 
I1 

S 

2:1 
mux Z 

I0 
I1 

S 

Z 0 
1 
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two alternative forms 
for a 2:1 Mux truth table 

functional form 

logical form 

S  Z 
0  I0 
1  I1 

I1  I0  S  Z 
0  0  0  0 
0  0  1  0 
0  1  0  1 
0  1  1  0 
1  0  0  0 
1  0  1  1 
1  1  0  1 
1  1  1  1 

Z = S' I0  + S I1 

Multiplexers/selectors 

  Multiplexers/selectors: general concept 
  2n data inputs, n control inputs (called "selects"), 1 output 
  used to connect one of 2n inputs to the single output 
  control signal pattern forms binary index of input connected to output 
  e.g. 2-1 mux 

I0 
I1 

S 

2:1 
mux Z 

I0 
I1 

S 

Z 0 
1 
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Gate level implementation of muxes 
  2:1 mux 

  4:1 mux 
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I0 
I1 
I2 
I3 
I4 
I5 
I6 
I7 

S2 S1 S0 

8:1 
mux 

Z 
I0 
I1 
I2 
I3 

S1 S0 

4:1 
mux 

Z 
I0 
I1 

S 

2:1 
mux Z 

Multiplexers/selectors (cont'd) 



26 

alternative 
implementation 

S2 

Z 

S1 S0 

4:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

I4 
I5 

I2 
I3 

I0 
I1 

I6 
I7 

8:1 
mux 

Z 

I0 
I1 
I2 
I3 

S0 

I4 
I5 
I6 
I7 

S2 S1 

4:1 
mux 

4:1 
mux 

2:1 
mux 

8:1 
mux 

Cascading multiplexers 
  Large multiplexers can be implemented by cascading 

smaller ones using a tree structure 
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C A B 

0  A'B'C' 
1  A'B'C 
2  A'BC' 
3  A'BC 
4  AB'C' 
5  AB'C 
6  ABC' 
7  ABC 

S2 

3:8 DEC 

S1 S0 

G 

Enable 

Decoders 
  General idea: 

  Convert a binary number into a “1-hot” number 
  n inputs (address) 
  2n  outputs 
  enable input (optional) 

  0 -> all outputs 0 



Gate level implementation of decoders 
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  1:2 decoder 

  2:4 decoder 

O0 G 

S 

O1 

S1 

O2 

O3 

O0 G 

O1 

S0 
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0  A'B'C'D'E' 
1 
2 
3 
4 
5 
6 
7 S2 

3:8 DEC 

S1 S0 

A B 

0 
1 
2 
3 S1 

2:4 DEC 

S0 

F 

0 
1 
2  A'BC'DE' 
3 
4 
5 
6 
7 S2 

3:8 DEC 

S1 S0 

E C D 

0  AB'C'D'E' 
1 
2 
3 
4 
5 
6 
7  AB'CDE 

3:8 DEC 

0 
1 
2 
3 
4 
5 
6 
7  ABCDE 

E C D 

S2 S1 S0 S2 

3:8 DEC 

S1 S0 

Cascading decoders 

  Use a tree structure 
  cheaper than 2-level implementation 

  5:32 decoder 
  1x2:4 decoder 
  4x3:8 decoders 



2-Level Logic Minimization 
  Important because of 2-level implementations 

  PLAs – 1950s 
  PALs – 1970s 

  By-hand methods – Karnaugh maps 
  Only for small functions 
  Good for visualization 

  Exact methods good up to 15 or so inputs 
  1950’s – Quine-McCluskey algorithm 

  Heuristic methods for more than that 
  1970’s – Espresso 



Multi-Level Logic Minimization 
  Factor function into smaller functions 

  Smaller gates 
  Fewer gates 
  Deeper circuit – cost/performance tradeoff 

  Needed for FPGAs and semi-custom ASICs 
  Circuit libraries with “small” gates 

  Developed in the 1980s and 90s 
  Much more difficult problem than 2-level minimization 

  Many different factoring methods 



Simple Factoring - Decomposition 
  Shannon/Ashenhurst Decomposition 

  F(a, b, c, d, …) = a’ Fa=0(b, c, d,…) + a Fa=1(b, c, d,…) 
  2-1 Mux 

   



Example 
  f(a,b,c,d,e) = ad' + bde + a'de' + bd'c'  



Logic Synthesis 
  Compiles HDL into gates 
  1. Elaboration – parse HDL program into standard form 
  2. Logic optimization – minimize cost/maximize 

performance 
  3. Tech mapping – map optimized circuit to available 

library components 
  May require “re-synthesis” 

  4. Physical Re-Synthesis – transform circuit when placing 
and routing 
  Process is unpredictable 



Logic Synthesis 
  Insulates us from the details 

  Like a C or Java compiler 

  But we need to understand the implications of what we 
write in HDL 
  Just like in C or Java 

  Each FPGA company has its own synthesis tool 
  And Cadence, Synopsis, Mentor, … 



Verilog Introduction 
  Two ways to describe: 

  Behavioral  Verilog 
  describe what a component does, not how it does it 
  synthesized into a circuit that has this behavior 

  Structural  Verilog 
  list of components and how they are connected 
  just like schematics, but using text 
  hard to write, hard to decode 
  used to compose systems hierarchically from components 



Verilog by Example  
  Ripple-Carry Adder 

  We will describe the full-adder as a behavioral module 
  We will connect these together in a higher-level 

component 



full_adder module 

module full_adder 
  (input a, 
   input b, 
   input c, 
   output sum, 
   output carry); 
  assign sum = a & ~b & ~c | ~a & b & ~c |  
              ~a & ~b & c | a & b & c; 
  assign carry = a & b | a & c | b & c; 
endmodule 



assign statement 
  A single assignment equation 

  One logical function (possibly multiple-bit value) 

  Each assignment is a process 
  Runs in parallel with all other processes 

  Order of assignments does not matter! 

  Executes whenever an input changes 
  Just like logic gates 



Verilog Operators 



Alternative full_adder module 

  We add the 3 input bits together (count) 
  The 2-bit result is assigned to the 2-bit bus 

  { carry, sum } 

module full_adder 
  (input a, 
   input b, 
   input c, 
   output sum, 
   output carry); 
  assign { carry, sum } = a + b + c; 
endmodule 



adder4 module 

  This module just wires together the full-adders 
  Connects the processes together 

module adder4 
  (input [3:0] a, 
   input [3:0] b, 
   output [3:0] sum); 
  wire carry0, carry1, carry2; 
  full_adder fa0(.a(a[0]), .b(b[0]), .c(0) 
                 .sum(sum[0], .carry(carry0)); 
  full_adder fa1(.a(a[1]), .b(b[1]), .c(carry0) 
                 .sum(sum[1], .carry(carry1)); 
  full_adder fa2(.a(a[2]), .b(b[2]), .c(carry1) 
                 .sum(sum[2], .carry(carry2)); 
  full_adder fa3(.a(a[3]), .b(b[3]), .c(carry2) 
                 .sum(sum[3], .carry( )); 
endmodule 



Verilog Data Types and Values 
  Bits - value on a single wire 

  0, 1 
  X     - don’t care 
  Z   - undriven, tri-state 

  Vectors of bits – busses 
  A[3:0] - vector of 4 bits:  A[3], A[2], A[1], A[0] 
  Treated as an unsigned integer value by default 

  e.g.  A < 0 ?? 
  Can declare variables ad signed 

  Concatenating bits/vectors into a vector 
  e.g. sign extend 
  B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]}; 
  B[7:0] = {4{A[3]}, A[3:0]}; 



Verilog Numbers 
  14 - ordinary decimal number 
  -14 - 2’s complement representation 
  12’b0000_0100_0110  - binary number with 12 bits 

(_ is ignored) 
  3’h046  - hexadecimal number with 12 bits 
  Verilog values are unsigned by default 

  e.g.  C[4:0] = A[3:0] + B[3:0]; 
  if A = 0110 (6) and B = 1010(-6) 

    C = 10000 not 00000 
i.e. B is zero-padded,  not sign-extended 

  For maximum safety, declare length of all intermediates 



always block 
  Contains a small program that is executed whenever an 

input changes 
  A parallel process, just like an assign statement 
  The block can make multiple assignments 
  The program is executed sequentially 
  The program describes the function computed by the block 
  Program is interpreted at compile time to generate a circuit 
  Combinational – takes no time 

  Even though the program semantics are sequential 



Combinational always block 
  always @(list_of_variables) 

  block executes when any of the variables change 
  easy to forget a variable 
  we will not use this style 

  always @(*) 
  This means to execute the program if any input changes 
  Just like an assign 



Alternative full_adder module 

  Order in the always block does matter 
  Variables assigned in an always block must be declared as reg 

module full_adder 
  (input a, 
   input b, 
   input c, 
   output reg sum, 
   output reg carry); 
  always @(*) begin 
    sum = a & ~b & ~c | ~a & b & ~c |  
              ~a & ~b & c | a & b & c; 
    carry = a & b | a & c | b & c; 
  end 
 endmodule 



Verilog Variables 
  wire 

  variable used to connect components together 
  inputs and outputs are wires by default 

  outputs be declared as regs 

  reg 
  Any variable that is assigned in an always block 

  cannot be assigned by an assign statement 

  usually corresponds to a wire in the circuit 
  is NOT a register in the circuit 

  Important:   
  The names wire and reg do not mean anything! 



Verilog if 
  Same as C if statement 

// Simple 4-1 mux 
module mux4 (sel, A, B, C, D, Y); 
  (input [1:0] sel, // 2-bit control signal 
   input A, input B, input C, input D, 
   output reg Y); 

  always @(*) begin 
    if      (sel == 2’b00) Y = A; 
    else if (sel == 2’b01) Y = B; 
    else if (sel == 2’b10) Y = C; 
    else if (sel == 2’b11) Y = D; 
  end 
endmodule 



Verilog if 
  Another way 

// Simple 4-1 mux 
module mux4 (sel, A, B, C, D, Y); 
  (input [1:0] sel, // 2-bit control signal 
   input A, input B, input C, input D, 
   output reg Y); 

  always @(*) begin     
    if (sel[0] == 0) 
      if (sel[1] == 0) Y = A; 
      else             Y = B; 
    else 
      if (sel[1] == 0) Y = C; 
      else             Y = D; 
  end 
endmodule 



Verilog case 
  Sequential execution of cases 

  only first case that matches is executed (no break) 
  default case can be used  
// Simple 4-1 mux 
module mux4 (sel, A, B, C, D, Y); 
  (input [1:0] sel,  // 2-bit control signal 
   input A, input B, input C, input D, 
   output reg Y); 

  always @(*) begin 
    case (sel) 
      2’b00: Y = A; 
      2’b01: Y = B; 
      2’b10: Y = C; 
      2’b11: Y = D; 
    endcase 
  end 
endmodule 



Verilog case 
  Without the default case, this would *not* be combinational! 
  Assigning X to a variable means synthesis is free to assign any value 

// Simple binary encoder (input is 1-hot) 
module encode 
 (input  [7:0] A,    // 8-bit input vector 
  output reg [2:0] Y); // 3-bit encoded output 
  always @(*) 
    case (A) 
      8’b00000001: Y = 0; 
      8’b00000010: Y = 1; 
      8’b00000100: Y = 2; 
      8’b00001000: Y = 3; 
      8’b00010000: Y = 4; 
      8’b00100000: Y = 5; 
      8’b01000000: Y = 6; 
      8’b10000000: Y = 7; 
      default:  Y = 3’bX; // Don’t care when input is not 1-hot 
    endcase 
endmodule 



Verilog for 
  for is similar to C 
  for statement is executed at compile time 

  result is all that matters, not how result is calculated 

// simple encoder 
module encode 
 (input  [7:0] A,    // 8-bit input vector 
  output reg [2:0] Y); // 3-bit encoded output 
  integer i;   // Temporary variables for program only 
  reg [7:0] test; 

  always @(*) begin 
    test = 8b’00000001; 
    Y = 3’bX; 
    for (i = 0; i < 8; i = i + 1) begin 
       if (A == test) Y = i; 
       test = test << 1; 
    end 
  end 
endmodule 



Another Behavioral Example 
  Combinational block that computes Conway’s Game of Life rule 

module life 
 (input         self, 
  input [7:0]   neighbors, 
  output reg    out); 
  integer       count; 
  integer       i; 

  always @(*) begin 
    count = 0; 
    for (i = 0; i<8; i = i+1) count = count + neighbors[i]; 
    out = 0; 
    out = out | (count == 3); 
    out = out | ((self == 1) & (count == 2)); 
  end 
endmodule 



Summary: Verilog for Combinational Logic 

  Two alternatives: 
  assign statement – simple logic equation 
  always block – allows complex program to describe function 

  Each assign and always block compiles into a component 
  Combinational function with some inputs and outputs 

  All components operate in parallel, continuously 
  If any input changes, the function is recomputed 
  This may change the output 
  Which will cause inputs of some components to change 

  Just like a circuit made up of gates! 



Registers and Sequential Logic 
  Registers are used to store values 

  for sequencing 
  e.g.  R1 = R2 + R3 

       R0 = R1 – R4 

  Registers hold values while functions operate on them 
  When result is ready, registers “latch” the new values 

  Clock tells registers when to latch 
  Clock is slow enough that functions have time to finish 
  Only enabled registers latch new values 
  All registers latch simultaneously 
  e.g. shift register and swap 



Verilog Registers 
  always @(posedge clk) 
  The block program executes only when the clk transitions 

from 0 to 1 (positive edge) 
  All assignments in the block store values in a register 

  These assignments should use <= 
  (easy to forget) 

  All registered assignments happen at same instant 
  Not sequentially determined 
  =  causes sequential assignments – not like registers! 

  Examples 
  shift register 
  accumulator 
  counter 
  wavelet example 



Verilog by Example 
  Simple 8-bit register with synchronous reset 

  reset only has effect on rising edge of clock 

module reg8 
 (input   reset, 
  input   CLK, 
  input  [7:0] D, 
  output reg  [7:0]  Q); 

  always @(posedge CLK) 
   if (reset) 
     Q <= 0; 
   else 
     Q <= D; 

endmodule  // reg8 



N-bit Register with Asynchronous Reset 
  Example of parameterized module 

module 
 (input   reset, 
  input   CLK, 
  input  [N-1:0] D, 
  output reg  [N-1:0] Q(; 
  parameter N = 8;  // Allow N to be changed 

 always @(posedge CLK or posedge reset) 
   if (reset) 
     Q <= 0; 
   else if (CLK == 1) 
     Q <= D; 

endmodule  // regN 



Shift Register Example 
// 4 register shift register 
module shiftReg 
 (input   CLK, 
  input   reset,    // initialize registers  
  input   shift, 
  input  [7:0]  Din,  // Data input for load 
  output  [7:0]  Dout); 
  reg [7:0] D0, D1, D2, D3; 
  assign Dout = D0; 
  always @(posedge CLK) begin 
    if (reset) begin 
      D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else if (shift) begin 
      D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 
    end 
  end 

endmodule  // shiftReg 



FIR Filter Example 
module fir 
  (input   CLK, 
   input   reset,    // initialize registers  
   input  [7:0]  Din,  // Data input for load 
   output reg [7:0] Dout); 
   reg [7:0]   D0, D1, D2, D3; 
   localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1; 

   always @(posedge CLK) begin 
     if (reset) begin 
       D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else begin 
       D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 

    Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3; 
    end 
  end 
endmodule // fir 



Case Study – Division by Constant 
  e. g.  gray = (red + blue + green)/3 
  Division is very expensive in general 

  Area and Delay 
  Much more so than multiplication 

  Convert division to multiplication 
  Multiply by the reciprocal 
  e.g.  (red + blue + green) * 0.33 
  Floating-point?? 

  Also expensive! 

  Key idea: multiply & divide by 2n is FREE 



RGB to Grayscale 
  Y = 0.3*R + 0.59*G + 0.11*B 
  1024 * 0.3 = 307.2 
  1024 * 0.59 = 604.16 
  1024 * 0.11 = 112.64 

  Y = (307*R + 604*G + 113*B) >> 10; 

  This works for multiplying/dividing with any number with 
fractions 
  Scale then re-scale 



Converting Division to Multiplication 
  Increase precision until it’s good enough 

  FPGA has 18x18 multipliers – almost free 

  Division by a variable? 
  Table lookup of reciprocal 
  Does not scale to large numbers 
  Use iterative solutions 


