
Lecture 2 – Combinational Circuits
and Verilog

CSE P567

Example: r1 = r2 + r3

  We need:
  Registers
  Adder function (combinational logic)
  Wires

Example: r1 = r2 + r3

  We need:
  Registers
  adder function (combinational logic)
  Wires
  Selection function

  We won’t always want r2 and r3

Combinational Logic
  Functions with no state
  Output is a function of the inputs only – no history

  add
  subtract
  multiply
  count-ones
  FSM next state function

  All computation is done in binary
  Primitive circuit values are on/off, Vdd/GND, current/no

current

Review: Binary Encoding of Numbers
  Unsigned numbers

  bn-12n-1 + bn-22n-2 + . . . + b020

  2s complement encoding of signed numbers
  -bn-12n-1 + bn-22n-2 + . . . + b020

  Same adder works for both unsigned and signed numbers

  To negate a number, invert all bits and add 1
  As slow as add in worst case

Binary Addition
  Simple addition algorithm works:

 0 1 1 0 +6
 1 1 0 1 -3

Binary Addition
  Simple addition algorithm works:

  Note: we drop the carry out of the high-order bit
  Each bit computes the same simple functions

  Sum = f(a, b, Cin)
  Cout = f(a, b, Cin)
  Ripple carry adder

1 1 0 0

 0 1 1 0 +6
 1 1 0 1 -3

 0 0 1 1 3

Ripple-Carry Adder

  Each bit computes the same simple functions
  Sum = f(a, b, Cin)
  Cout = f(a, b, Cin)

  If we can write the function as a Boolean equation, we can
generate the circuit

Combinational Logic Design
  We can translate a Boolean function into logic gates

  AND, OR, INVERT

  e.g. Homework problem
  g0 = r0
  g1 = g1 * r0’
  g2 = g2 * r0’ * r1’

Homework Problem
  Homework problem

  Gates grow linearly
  Keep to <= 4 inputs

Homework Problem
  Homework problem

  “carry” chain of ORs
  “multi-level logic”
  linear delay
  can we do better?
  Yes we can!
  Any ideas?

Combinational Logic Design
  Finding the Boolean function? (e.g. Sum, Carry)

  Most functions are not obvious

  “Case analysis” always works
  Enumerate all possible input cases
  Determine value for each case
  Convert to Boolean equation
  (Not reasonable for large functions – more later)

Case Analysis for Sum and Cout
  There are 3 inputs and thus 8 different possibilities

a b Cin| Cout Sum
0 0 0 | 0 0
0 0 1 |
0 1 0 |
0 1 1 |
1 0 0 |
1 0 1 |
1 1 0 |
1 1 1 |

Case Analysis for Sum and Cout
  There are 3 inputs and thus 8 different possibilities

  Also known as a 3-2 counter

a b Cin| Cout Sum
0 0 0 | 0 0
0 0 1 | 0 1
0 1 0 | 0 1
0 1 1 | 1 0
1 0 0 | 0 1
1 0 1 | 1 0
1 1 0 | 1 0
1 1 1 | 1 1

Truth Table to Boolean Function
  Straightforward process

  Cout = abc + abc + abc + abc

  Sum = abc + abc + abc + abc

a b c | Cout Sum
0 0 0 | 0 0
0 0 1 | 0 1
0 1 0 | 0 1
0 1 1 | 1 0
1 0 0 | 0 1
1 0 1 | 1 0
1 1 0 | 1 0
1 1 1 | 1 1

abc
abc
abc
abc
abc
abc
abc
abc

16

A B C F F'
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

 011 100 101 110 111
F = A'BC + AB'C' + AB'C + ABC' + ABC

F' = A'B'C' + A'B'C + A'BC'

Canonical forms: Sum Of Products
  Truth table is the unique signature of a Boolean function
  Many alternative expressions may have the same truth table
  Canonical form

  standard form for a Boolean expression
  Sum-of-products form –

a.k.a. disjunctive normal form or minterm expansion

17

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– we "don't care" about associated
output values, and this can be
exploited in minimization

don't care (DC) set of W

on-set of W

Incompletely specified functions
  Example: binary coded decimal increment by 1

  BCD digits encode the decimal digits 0 – 9 in the bit patterns
0000 – 1001

18

minterms

AND plane OR plane

Regular Two-Level Logic

  Basis is canonical form
  Note notation for high-fanin gates

This is a “Canonical” Description
  Exactly one truth table for a function

  Canonical “Sum of Products” equation

  This equation is in general not minimal
  e.g. Cout = abc + abc + abc + abc

  Minimal equation:
  Cout = ab + bc + ac

  Much cheaper:
  4 3-input ANDs + 1 4-input OR
  vs. 3 2-input ANDs + 1 3-input OR

  What about Sum?

Sum
  Sum = abc + abc + abc + abc
  Can we reduce this?
  Karnaugh map allows us to visualize the function

  Adjacencies allow minimization

  Sum cannot be minimized (with 2-level logic)

0 1 0 1

1 0 1 0

0

1

AB
A

00 01 11 10 C

B

0 0 1 0

0 1 1 1

0

1

AB
A

00 01 11 10 C

B

Sum Carry

Cheaper Sum – Multi-level Circuit
  12 gate inputs vs. 16

  (ignore inverters)

  Slower (but smaller gates)

22

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

S Z
0 I0
1 I1

Z = S' I0 + S I1

Multiplexers/selectors

  Multiplexers/selectors: general concept
  2n data inputs, n control inputs (called "selects"), 1 output
  used to connect one of 2n inputs to the single output
  control signal pattern forms binary index of input connected to output
  e.g. 2-1 mux

I0
I1

S

2:1
mux Z

I0
I1

S

Z 0
1

23

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

S Z
0 I0
1 I1

I1 I0 S Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = S' I0 + S I1

Multiplexers/selectors

  Multiplexers/selectors: general concept
  2n data inputs, n control inputs (called "selects"), 1 output
  used to connect one of 2n inputs to the single output
  control signal pattern forms binary index of input connected to output
  e.g. 2-1 mux

I0
I1

S

2:1
mux Z

I0
I1

S

Z 0
1

24

Gate level implementation of muxes
  2:1 mux

  4:1 mux

25

I0
I1
I2
I3
I4
I5
I6
I7

S2 S1 S0

8:1
mux

Z
I0
I1
I2
I3

S1 S0

4:1
mux

Z
I0
I1

S

2:1
mux Z

Multiplexers/selectors (cont'd)

26

alternative
implementation

S2

Z

S1 S0

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Z

I0
I1
I2
I3

S0

I4
I5
I6
I7

S2 S1

4:1
mux

4:1
mux

2:1
mux

8:1
mux

Cascading multiplexers
  Large multiplexers can be implemented by cascading

smaller ones using a tree structure

27

C A B

0 A'B'C'
1 A'B'C
2 A'BC'
3 A'BC
4 AB'C'
5 AB'C
6 ABC'
7 ABC

S2

3:8 DEC

S1 S0

G

Enable

Decoders
  General idea:

  Convert a binary number into a “1-hot” number
  n inputs (address)
  2n outputs
  enable input (optional)

  0 -> all outputs 0

Gate level implementation of decoders

28

  1:2 decoder

  2:4 decoder

O0 G

S

O1

S1

O2

O3

O0 G

O1

S0

29

0 A'B'C'D'E'
1
2
3
4
5
6
7 S2

3:8 DEC

S1 S0

A B

0
1
2
3 S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7 S2

3:8 DEC

S1 S0

E C D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE

E C D

S2 S1 S0 S2

3:8 DEC

S1 S0

Cascading decoders

  Use a tree structure
  cheaper than 2-level implementation

  5:32 decoder
  1x2:4 decoder
  4x3:8 decoders

2-Level Logic Minimization
  Important because of 2-level implementations

  PLAs – 1950s
  PALs – 1970s

  By-hand methods – Karnaugh maps
  Only for small functions
  Good for visualization

  Exact methods good up to 15 or so inputs
  1950’s – Quine-McCluskey algorithm

  Heuristic methods for more than that
  1970’s – Espresso

Multi-Level Logic Minimization
  Factor function into smaller functions

  Smaller gates
  Fewer gates
  Deeper circuit – cost/performance tradeoff

  Needed for FPGAs and semi-custom ASICs
  Circuit libraries with “small” gates

  Developed in the 1980s and 90s
  Much more difficult problem than 2-level minimization

  Many different factoring methods

Simple Factoring - Decomposition
  Shannon/Ashenhurst Decomposition

  F(a, b, c, d, …) = a’ Fa=0(b, c, d,…) + a Fa=1(b, c, d,…)
  2-1 Mux

 

Example
  f(a,b,c,d,e) = ad' + bde + a'de' + bd'c'

Logic Synthesis
  Compiles HDL into gates
  1. Elaboration – parse HDL program into standard form
  2. Logic optimization – minimize cost/maximize

performance
  3. Tech mapping – map optimized circuit to available

library components
  May require “re-synthesis”

  4. Physical Re-Synthesis – transform circuit when placing
and routing
  Process is unpredictable

Logic Synthesis
  Insulates us from the details

  Like a C or Java compiler

  But we need to understand the implications of what we
write in HDL
  Just like in C or Java

  Each FPGA company has its own synthesis tool
  And Cadence, Synopsis, Mentor, …

Verilog Introduction
  Two ways to describe:

  Behavioral Verilog
  describe what a component does, not how it does it
  synthesized into a circuit that has this behavior

  Structural Verilog
  list of components and how they are connected
  just like schematics, but using text
  hard to write, hard to decode
  used to compose systems hierarchically from components

Verilog by Example
  Ripple-Carry Adder

  We will describe the full-adder as a behavioral module
  We will connect these together in a higher-level

component

full_adder module

module full_adder
 (input a,
 input b,
 input c,
 output sum,
 output carry);
 assign sum = a & ~b & ~c | ~a & b & ~c |
 ~a & ~b & c | a & b & c;
 assign carry = a & b | a & c | b & c;
endmodule

assign statement
  A single assignment equation

  One logical function (possibly multiple-bit value)

  Each assignment is a process
  Runs in parallel with all other processes

  Order of assignments does not matter!

  Executes whenever an input changes
  Just like logic gates

Verilog Operators

Alternative full_adder module

  We add the 3 input bits together (count)
  The 2-bit result is assigned to the 2-bit bus

  { carry, sum }

module full_adder
 (input a,
 input b,
 input c,
 output sum,
 output carry);
 assign { carry, sum } = a + b + c;
endmodule

adder4 module

  This module just wires together the full-adders
  Connects the processes together

module adder4
 (input [3:0] a,
 input [3:0] b,
 output [3:0] sum);
 wire carry0, carry1, carry2;
 full_adder fa0(.a(a[0]), .b(b[0]), .c(0)
 .sum(sum[0], .carry(carry0));
 full_adder fa1(.a(a[1]), .b(b[1]), .c(carry0)
 .sum(sum[1], .carry(carry1));
 full_adder fa2(.a(a[2]), .b(b[2]), .c(carry1)
 .sum(sum[2], .carry(carry2));
 full_adder fa3(.a(a[3]), .b(b[3]), .c(carry2)
 .sum(sum[3], .carry());
endmodule

Verilog Data Types and Values
  Bits - value on a single wire

  0, 1
  X - don’t care
  Z - undriven, tri-state

  Vectors of bits – busses
  A[3:0] - vector of 4 bits: A[3], A[2], A[1], A[0]
  Treated as an unsigned integer value by default

  e.g. A < 0 ??
  Can declare variables ad signed

  Concatenating bits/vectors into a vector
  e.g. sign extend
  B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
  B[7:0] = {4{A[3]}, A[3:0]};

Verilog Numbers
  14 - ordinary decimal number
  -14 - 2’s complement representation
  12’b0000_0100_0110 - binary number with 12 bits

(_ is ignored)
  3’h046 - hexadecimal number with 12 bits
  Verilog values are unsigned by default

  e.g. C[4:0] = A[3:0] + B[3:0];
  if A = 0110 (6) and B = 1010(-6)

 C = 10000 not 00000
i.e. B is zero-padded, not sign-extended

  For maximum safety, declare length of all intermediates

always block
  Contains a small program that is executed whenever an

input changes
  A parallel process, just like an assign statement
  The block can make multiple assignments
  The program is executed sequentially
  The program describes the function computed by the block
  Program is interpreted at compile time to generate a circuit
  Combinational – takes no time

  Even though the program semantics are sequential

Combinational always block
  always @(list_of_variables)

  block executes when any of the variables change
  easy to forget a variable
  we will not use this style

  always @(*)
  This means to execute the program if any input changes
  Just like an assign

Alternative full_adder module

  Order in the always block does matter
  Variables assigned in an always block must be declared as reg

module full_adder
 (input a,
 input b,
 input c,
 output reg sum,
 output reg carry);
 always @(*) begin
 sum = a & ~b & ~c | ~a & b & ~c |
 ~a & ~b & c | a & b & c;
 carry = a & b | a & c | b & c;
 end
 endmodule

Verilog Variables
  wire

  variable used to connect components together
  inputs and outputs are wires by default

  outputs be declared as regs

  reg
  Any variable that is assigned in an always block

  cannot be assigned by an assign statement

  usually corresponds to a wire in the circuit
  is NOT a register in the circuit

  Important:
  The names wire and reg do not mean anything!

Verilog if
  Same as C if statement

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 if (sel == 2’b00) Y = A;
 else if (sel == 2’b01) Y = B;
 else if (sel == 2’b10) Y = C;
 else if (sel == 2’b11) Y = D;
 end
endmodule

Verilog if
  Another way

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 if (sel[0] == 0)
 if (sel[1] == 0) Y = A;
 else Y = B;
 else
 if (sel[1] == 0) Y = C;
 else Y = D;
 end
endmodule

Verilog case
  Sequential execution of cases

  only first case that matches is executed (no break)
  default case can be used
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 case (sel)
 2’b00: Y = A;
 2’b01: Y = B;
 2’b10: Y = C;
 2’b11: Y = D;
 endcase
 end
endmodule

Verilog case
  Without the default case, this would *not* be combinational!
  Assigning X to a variable means synthesis is free to assign any value

// Simple binary encoder (input is 1-hot)
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 always @(*)
 case (A)
 8’b00000001: Y = 0;
 8’b00000010: Y = 1;
 8’b00000100: Y = 2;
 8’b00001000: Y = 3;
 8’b00010000: Y = 4;
 8’b00100000: Y = 5;
 8’b01000000: Y = 6;
 8’b10000000: Y = 7;
 default: Y = 3’bX; // Don’t care when input is not 1-hot
 endcase
endmodule

Verilog for
  for is similar to C
  for statement is executed at compile time

  result is all that matters, not how result is calculated

// simple encoder
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 integer i; // Temporary variables for program only
 reg [7:0] test;

 always @(*) begin
 test = 8b’00000001;
 Y = 3’bX;
 for (i = 0; i < 8; i = i + 1) begin
 if (A == test) Y = i;
 test = test << 1;
 end
 end
endmodule

Another Behavioral Example
  Combinational block that computes Conway’s Game of Life rule

module life
 (input self,
 input [7:0] neighbors,
 output reg out);
 integer count;
 integer i;

 always @(*) begin
 count = 0;
 for (i = 0; i<8; i = i+1) count = count + neighbors[i];
 out = 0;
 out = out | (count == 3);
 out = out | ((self == 1) & (count == 2));
 end
endmodule

Summary: Verilog for Combinational Logic

  Two alternatives:
  assign statement – simple logic equation
  always block – allows complex program to describe function

  Each assign and always block compiles into a component
  Combinational function with some inputs and outputs

  All components operate in parallel, continuously
  If any input changes, the function is recomputed
  This may change the output
  Which will cause inputs of some components to change

  Just like a circuit made up of gates!

Registers and Sequential Logic
  Registers are used to store values

  for sequencing
  e.g. R1 = R2 + R3

 R0 = R1 – R4

  Registers hold values while functions operate on them
  When result is ready, registers “latch” the new values

  Clock tells registers when to latch
  Clock is slow enough that functions have time to finish
  Only enabled registers latch new values
  All registers latch simultaneously
  e.g. shift register and swap

Verilog Registers
  always @(posedge clk)
  The block program executes only when the clk transitions

from 0 to 1 (positive edge)
  All assignments in the block store values in a register

  These assignments should use <=
  (easy to forget)

  All registered assignments happen at same instant
  Not sequentially determined
  = causes sequential assignments – not like registers!

  Examples
  shift register
  accumulator
  counter
  wavelet example

Verilog by Example
  Simple 8-bit register with synchronous reset

  reset only has effect on rising edge of clock

module reg8
 (input reset,
 input CLK,
 input [7:0] D,
 output reg [7:0] Q);

 always @(posedge CLK)
 if (reset)
 Q <= 0;
 else
 Q <= D;

endmodule // reg8

N-bit Register with Asynchronous Reset
  Example of parameterized module

module
 (input reset,
 input CLK,
 input [N-1:0] D,
 output reg [N-1:0] Q(;
 parameter N = 8; // Allow N to be changed

 always @(posedge CLK or posedge reset)
 if (reset)
 Q <= 0;
 else if (CLK == 1)
 Q <= D;

endmodule // regN

Shift Register Example
// 4 register shift register
module shiftReg
 (input CLK,
 input reset, // initialize registers
 input shift,
 input [7:0] Din, // Data input for load
 output [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 assign Dout = D0;
 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else if (shift) begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
 end
 end

endmodule // shiftReg

FIR Filter Example
module fir
 (input CLK,
 input reset, // initialize registers
 input [7:0] Din, // Data input for load
 output reg [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1;

 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;

 Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3;
 end
 end
endmodule // fir

Case Study – Division by Constant
  e. g. gray = (red + blue + green)/3
  Division is very expensive in general

  Area and Delay
  Much more so than multiplication

  Convert division to multiplication
  Multiply by the reciprocal
  e.g. (red + blue + green) * 0.33
  Floating-point??

  Also expensive!

  Key idea: multiply & divide by 2n is FREE

RGB to Grayscale
  Y = 0.3*R + 0.59*G + 0.11*B
  1024 * 0.3 = 307.2
  1024 * 0.59 = 604.16
  1024 * 0.11 = 112.64

  Y = (307*R + 604*G + 113*B) >> 10;

  This works for multiplying/dividing with any number with
fractions
  Scale then re-scale

Converting Division to Multiplication
  Increase precision until it’s good enough

  FPGA has 18x18 multipliers – almost free

  Division by a variable?
  Table lookup of reciprocal
  Does not scale to large numbers
  Use iterative solutions

