CSE 592: Data Mining

Instructor: Pedro Domingos

Today's Agenda

- Inductive learning
- Decision trees

Inductive Learning

Supervised Learning

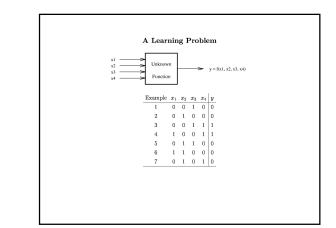
- Given: Training examples $\langle \mathbf{x}, f(\mathbf{x}) \rangle$ for some unknown function f.
- Find: A good approximation to f.

Example Applications

- Credit risk assessment
 x: Properties of customer and proposed purchase.
 f(x): Approve purchase or not.
- Disease diagnosis x: Properties of patient (symptoms, lab tests)
- f(x): Disease (or maybe, recommended therapy)
 Face recognition
- **x**: Bitmap picture of person's face $f(\mathbf{x})$: Name of the person.
- Automatic Steering
- x: Bitmap picture of road surface in front of car. f(x): Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

- Situations where there is no human expert
- ${\bf x}:$ Bond graph for a new molecule. $f({\bf x}):$ Predicted binding strength to AIDS protease molecule.
- Situations where humans can perform the task but can't describe how
- they do it. x: Bitmap picture of hand-written character
- $f(\mathbf{x})$: Ascii code of the character
- Situations where the desired function is changing frequently x: Description of stock prices and trades for last 10 days.
- $f(\mathbf{x})$: Recommended stock transactions
- \bullet Situations where each user needs a customized function f
- **x**: Incoming email message. $f(\mathbf{x})$: Importance score for presenting to user (or deleting without presenting).



Hypot	he	esi	s f	Sp	aces
• Complete Ignorance. There are	2 ¹⁶ /hic	3 =	= 6 one	553 is	6 possible boolean functions over four correct until we've seen every possible
2	1 x	c2	x_3	x_4	y
0	. (0	0	0	?
0	. (0	0	1	?
0			1	0	0
0		-	-	1	1
0				0	0
0		1	0	1	0
0			1		0
0			1	1	?
1		0	0	0	?
1		0		1	1
1		0	1	0	?
1		-	1	1	?
1			0	0	0
1		1	0	1	?
1		1	1	0	?
_1		1	1	1	?

	Hypothesis S	Spaces (2)	
Simple Rules. There	are only 16 simple c	onjunctive rules.	
н	ule	Counterexample	
-	> y	1	
x	$_1 \Rightarrow y$	3	
x	$_2 \Rightarrow y$	2	
x	$_3 \Rightarrow y$	1	
x	$\iota \Rightarrow y$	7	
x	$_1 \land x_2 \Rightarrow y$	3	
x	$_1 \land x_3 \Rightarrow y$	3	
x	$_1 \land x_4 \Rightarrow y$	3	
	$_2 \land x_3 \Rightarrow y$	3	
x	$_2 \land x_4 \Rightarrow y$	3	
x	$_3 \land x_4 \Rightarrow y$	4	
x	$_1 \land x_2 \land x_3 \Rightarrow y$	3	
x	$1 \land x_2 \land x_4 \Rightarrow y$	3	
x	$_1 \land x_3 \land x_4 \Rightarrow y$	3	
x	$x_2 \land x_3 \land x_4 \Rightarrow y$	3	
<i>x</i>	$_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow$	y 3	

Hypothe • <i>m</i> -of- <i>n</i> rules. There are 32 possible r		-		<i>.</i>	junctions an	d clauses						
	Counterexample											
variables	1-of	2-of	3-of	4-of								
{ <i>x</i> ₁ }	3	-	-	-								
$\{x_2\}$	2	-	-	-								
$\{x_3\}$	1	-	-	-								
$\{x_4\}$	7	-	-	-								
$\{x_1, x_2\}$	3	3	-	-								
$\{x_1, x_3\}$	4	3	-	-								
$\{x_1, x_4\}$	6	3	-	-								
$\{x_2, x_3\}$	2	3										
$\{x_2, x_4\}$	2	3		-								
$\{x_3, x_4\}$	4	4	-	-								
$\{x_1, x_2, x_3\}$	1	3	3	-								
$\{x_1, x_2, x_4\}$	2	3	3	-								
$\{x_1, x_3, x_4\}$	1	***	3	-								
$\{x_2, x_3, x_4\}$	1	5	3	-								
$\{x_1, x_2, x_3, x_4\}$	1	5	3	3								

- Learning is the removal of our remaining uncertainty. Suppose we knew that the unknown function was an m-of-n boolean function, then we could use the training examples to infer which function it is.
- Learning requires guessing a good, small hypothesis class. We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!

- Our prior knowledge might be wrongOur guess of the hypothesis class could be wrong
- Our guess of the hypothesis class could be wrong The smaller the hypothesis class, the more likely we are wrong.

Example: $x_4 \ \land \ One of\{x_1, x_3\} \Rightarrow y$ is also consistent with the training data.

Example: $x_4 \land \neg x_2 \Rightarrow y$ is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new \boldsymbol{x} values.

Two Strategies for Machine Learning

- Develop Languages for Expressing Prior Knowledge: Rule grammars and stochastic models.
- Develop Flexible Hypothesis Spaces: Nested collections of hypotheses. Decision trees, rules, neural networks, cases.

In either case:

• Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, ..., K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Key Issues in Machine Learning

- What are good hypothesis spaces?
- Which spaces have been useful in practical applications and why? • What algorithms can work with these spaces?
- Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points? This is sometimes called the "problem of overfitting".
- How can we have confidence in the results?
- How much training data is required to find accurate hypotheses? (the $statistical \; question)$
- Are some learning problems computationally intractable? (the computational question)
- How can we formulate application problems as machine learning problems? (the engineering question)

A Framework for Hypothesis Spaces

- Size. Does the hypothesis space have a fixed size or variable size?
 Fixed-size spaces are easier to understand, but variable-size spaces are generally more useful. Variable-size spaces introduce the problem of overfitting.
- Randomness. Is each hypothesis deterministic or stochastic?
- This affects how we evaluate hypotheses. With a deterministic hypothesis, a training example is either *consistent* (incorrectly predicted) or *inconsistent* (incorrectly predicted). With a stochastic hypothesis, a training example is *more likely* or *less likely*.
- Parameterization. Is each hypothesis described by a set of symbolic (discrete) choices or is it described by a set of continuous parameters? If both are required, we say the hypothesis space has a mixed parameterization.

Discrete parameters must be found by combinatorial search methods; continuous parameters can be found by numerical search methods.

A Framework for Learning Algorithms

• Search Procedure.

- Direction Computation: solve for the hypothesis directly.
- Local Search: start with an initial hypothesis, make small improvements until a local optimum.
 Constructive Search: start with an empty hypothesis, gradually add structure to it
- until local optimum.

• Timing.

- Eager: Analyze the training data and construct an explicit hypothesis. Lazy: Store the training data and wait until a test data point is presented, then construct an ad hoc hypothesis to classify that one data point.
- Online vs. Batch. (for eager algorithms)
- Online: Analyze each training example as it is presented. Batch: Collect training examples, analyze them, output an hypothesis.

Decision Trees

Learning Decision Trees

- Decision trees provide a very popular and efficient hypothesis space.
- Variable Size. Any boolean function can be represented.
- Deterministic.
- Discrete and Continuous Parameters.
- Learning algorithms for decision trees can be described as

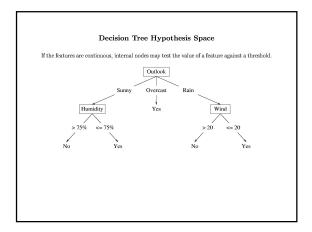
 Constructive Search. The tree is built by adding nodes.
- Eager.
- Batch (although online algorithms do exist).

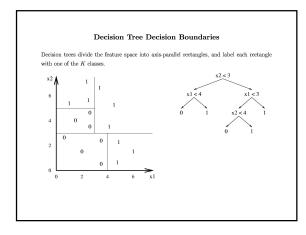
Decision Tree Hypothesis Space • Internal nodes test the value of particular features x_i and branch according to the

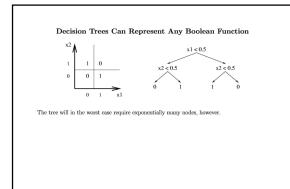
results of the test. • Leaf nodes specify the class $h(\mathbf{x})$.

High

Strong







As the number of nodes (or depth) of tree increases, the hypothesis space grows $% \left({{{\bf{n}}_{\rm{s}}}} \right)$

depth 1 ("decision stump") can represent any boolean function of one feature.
depth 2 Any boolean function of two features; some boolean functions involving three features (e.g., (x₁ ∧ x₂) ∨ (¬x₁ ∧ ¬x₃)

• etc.

Learning Algorithm for Decision Trees

The same basic learning algorithm has been discovered by many people independently:

GROWTREE(S)

Grow had(S) if $(y = 0 \text{ for all } (\mathbf{x}, y) \in S)$ return new leaf(0) else if $(y = 1 \text{ for all } (\mathbf{x}, y) \in S)$ return new leaf(1) else choose best attribute x_j $S_0 = \text{all } (\mathbf{x}, y) \in S$ with $x_j = 0$;

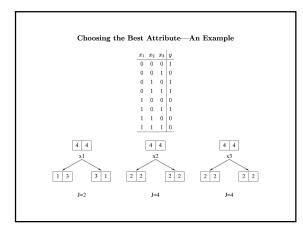
 $\begin{array}{l} S_0 = \mathrm{all}\; (\mathbf{x}, y) \in S \; \mathrm{with}\; x_j = 0; \\ S_1 = \mathrm{all}\; \langle \mathbf{x}, y\rangle \in S \; \mathrm{with}\; x_j = 1; \\ \mathbf{return}\; \mathrm{new}\; \mathrm{node}(x_j, \mathrm{GRowTree}(S_0), \mathrm{GRowTree}(S_1)) \end{array}$

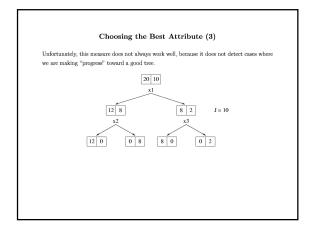
Choosing the Best Attribute

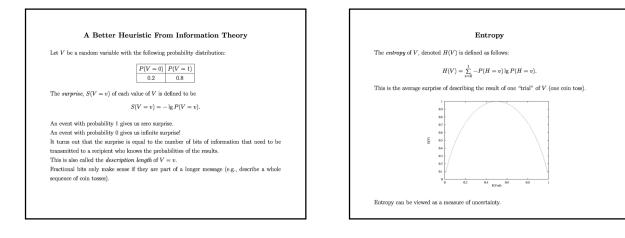
One way to choose the best attribute is to perform a 1-step lookahead search and choose the attribute that gives the lowest error rate on the training data.

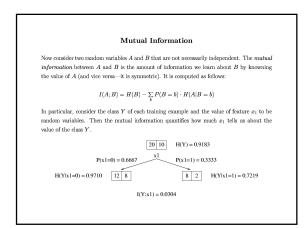
CHOOSEBESTATTRIBUTE(S) choose j to minimize J_j , computed as follows: $S_0 = \text{all } \langle \mathbf{x}, y \rangle \in S$ with $x_j = 0$; $S_i = \text{all } \langle \mathbf{x}, y \rangle \in S$ with $x_j = 1$;

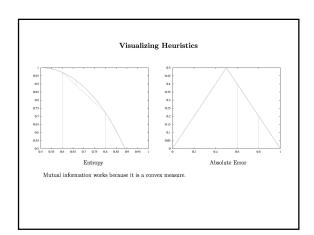
- $\begin{array}{l} S_1 = \mathrm{all} \ (\mathbf{x},y) \in S \ \mathrm{with} \ x_j = 1;\\ y_0 = \mathrm{the} \ \mathrm{most} \ \mathrm{common} \ \mathrm{value} \ \mathrm{of} \ y \ \mathrm{in} \ S_0 \\ y_1 = \mathrm{the} \ \mathrm{most} \ \mathrm{common} \ \mathrm{value} \ \mathrm{of} \ y \ \mathrm{in} \ S_1 \\ J_0 = \mathrm{number} \ \mathrm{of} \ \mathrm{examples} \ (\mathbf{x},y) \in S_0 \ \mathrm{with} \ y \neq y_0 \\ J_1 = \mathrm{number} \ \mathrm{of} \ \mathrm{examples} \ (\mathbf{x},y) \in S_1 \ \mathrm{with} \ y \neq y_0. \end{array}$
- $J_j = J_0 + J_1$ (total errors if we split on this feature) ${\bf return} \ j$

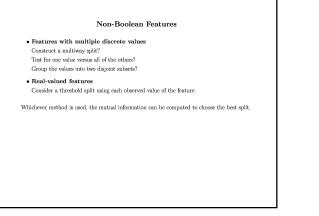


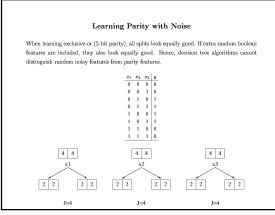


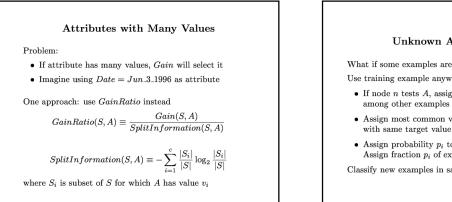


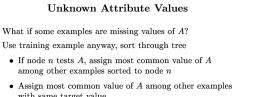






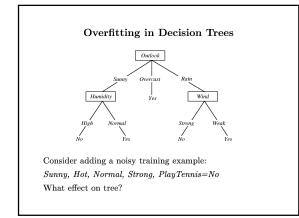


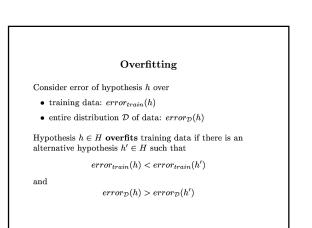


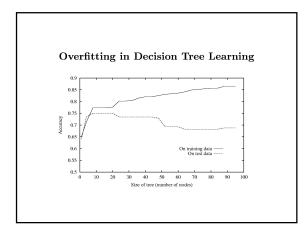


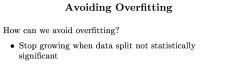
• Assign probability p_i to each possible value v_i of AAssign fraction p_i of example to each descendant in tree

Classify new examples in same fashion









• Grow full tree, then post-prune

How to select "best" tree:

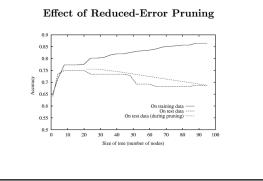
- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

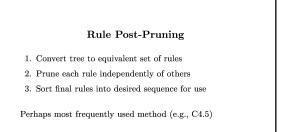
Reduced-Error Pruning

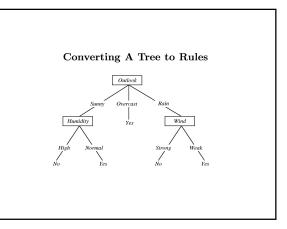
Split data into $\mathit{training}$ and $\mathit{validation}$ set

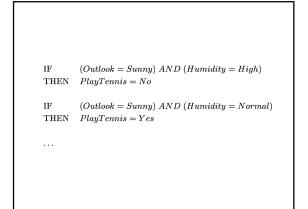
Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy









- ID3, C4.5, etc. assume data fits in main memory (OK for up to hundreds of thousands of examples)
- SPRINT, SLIQ: multiple sequential scans of data (OK for up to millions of examples)
- VFDT: at most one sequential scan (OK for up to billions of examples)

Summary

- Inductive learning
- Decision trees
 - Representation
 - Tree growth
 - Heuristics
 - Overfitting and pruning
 - Scaling up