CSE 592: Data Mining

Instructor: Pedro Domingos

Today’s Agenda

* Inductive learning
 Decision trees

Inductive Learning

Supervised Learning

 Given: Training examples (x, f(x)) for some unknown function f.

o Find: A good approximation to f.

Example Applications
o Credit risk assessment
x: Propertics of customer and proposed purchase.
f(x): Approve purchase or not.

« Disease diagnosis
x: Properties of patient (symptoms, lab tests)
f(x): Discase (or maybe, recommended therapy)

o Face recognition
x: Bitmap picture of person’s face
£(): Name of the person.

 Automatic Steering

x: Bitmap picture of road surface in front of car.
f(x): Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

« Situations where there is no human expert
x: Bond graph for a new molecule
F(): Predicted binding strength to AIDS protease molecule
o Situations where humans can perform the task but can’t describe how
they do it.
x: Bitmap picture of hand-written character
F(): Ascii code of the character

* Situations where the desired function is changing frequently
x: Description of stock prices and trades for last 10 days.
f(x): Recommended stock transactions

o Situations where each user needs a customized function f
x: Incoming email message.

f(x): Importance score for presenting to user (or deleting without presenting)

A Learning Problem
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Hypothesis Spaces

 Complete Ignorance. There arc 2' = 65536 possible boolean functions over four
input features. We can’t figure out which one is correct until we've seen every possible
input-output pair. After 7 examples, we still have 29 possibilities.
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Hypothesis Spaces (2)

o Simple Rules. There are only 16 simple conjunctive rules.

Rule Counterexample
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No simple rule explains the data. The same is true for simple clauses.

Hypothesis Space (3)
o m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses)
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Two Views of Learning

o Learning is the removal of our remaining uncertainty. Supposc we knew that
the unknown function was an m-of-n boolean function, then we could use the training

examples to infer which function it is.
o Learning requires guessing a good, small hypothesis class. We can start with
a very small class and enlarge it until it contains an hypothesis that fits the data.
We could be wrong!
« Our prior knowledge might be wrong
 Our guess of the hypothesis class could be wrong
The smaller the hypothesis class, the more likely we are wrong.
Example: @4 A Oneof{z1, w3} = y is also consistent with the training data.
Example: @4 A —z3 =  is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new
values.

Two Strategies for Machine Learning

o Develop L for Expressing Prior K ge: Rule and
stochastic models.

o Develop Flexible Hypothesis Spaces: Nested collections of hypotheses.
Decision trees, rules, neural networks, cases.
In either case:

* Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

o Training example. An example of the form (x, £(x)).
o Target function (target concept). The true function f
o Hypothesis. A proposed function h believed to be similar to f.

o Concept. A boolean function. Examples for which f(x) = 1 arc called positive ex-
0 are called

amples or positive instances of the concept. Examples for which £(x
negative examples or negative instances.

o Classifier. A discrete-valued function. The possible values £(x) € {1,..., K} are called
the classes or class labels.

« Hypothesis Space. The space of all hypotheses that can, in principle, be output by a

learning algorithm

® Version Space. The space of all hypotheses in the hypothesis space that have not yet
been ruled out by a training example.




Key Issues in Machine Learning
© What are good hypothesis spaces?
‘Which spaces have been useful in practical applications and why?
e What algorithms can work with these spaces?
Are there general design principles for machine learning algorithms?
« How can we optimize accuracy on future data points?
This is sometimes called the “problem of overfitting”.
* How can we have confidence in the results?
How much training data is required to find accurate hypotheses? (the statistical question)

 Are some learning problems computationally intractable?
(the computational question)

« How can we i as ine learning prob-
lems? (the engineering question)

A Framework for Hypothesis Spaces

o Size. Does the hypothesis space have a fixed size or variable size?
Fixed-size spaces arc easier to understand, but variable-size spaces are generally more
useful. Variable-size spaces introduce the problem of overfitting.

 Randomness. Is cach hypothesis deterministic or stochastic?
This affects how we evaluate hypotheses. With a deterministic hypothesis, a training
example is cither consistent (correctly predicted) or inconsistent (incorrectly predicted).
With a stochastic hypothesis, a training example is more likely or less likely.

o Parameterization. Is cach hypothesis described by a set of symbolic (discrete) choices
or is it described by a set of continuous parameters? If both are required, we say the
hypothesis space has a mixed parameterization.

Discrete parameters must be found by search methods; conti parame-
ters can be found by numerical search methods.

A Framework for Learning Algorithms

© Search Procedure.

Direction C fon: solve for the hypothesis dircctly.

Local Search: start with an initial hypothesis, make small improvements until a local
optimum
Constructive Search: start with an empty hypothesis, gradually edd structure to it
until local optimum.

« Timing
Eager: Analyze the training data and construct an explicit hypothesis.
Lazy: Store the training data and wait until a test data point is presented, then construct
an ad hoc hypothesis to classify that one data point.

« Online vs. Batch. (for cager algorithms)
Online: Analyze each training example as it is presented.
Batch: Collect training examples, analyze them, output an hypothesis.

Decision Trees

Learning Decision Trees

Decision trees provide a very popular and efficient hypothesis space.
« Variable Size. Any boolean function can be represented.
o Deterministic.
« Discrete and Continuous Parameters
Learning algorithms for decision trees can be described as
o Constructive Search. The tree is built by adding nodes
« Eager.

o Batch (although online algorithms do exist)

Decision Tree Hypothesis Space

o Internal nodes test the value of particular features z; and branch according to the
results of the test.

o Leaf nodes specify the class h(x).

Sumny  Overeast Rain
X
High  Normal Swong  Weak
< <

Suppose the features are Outlook (z1), Temperature (z2), Humidity (z3), and Wind
(«4). Then the feature vector x = (Sunny, Hot, High, Strong) will be classified as No. The
Temperature feature is irrclevant.




Decision Tree Hypothesis Space

1 the features are continuous, internal nodes may test the value of a feature against a threshold.

Sunny  Overcast Rain
Yes
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Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle
with one of the K classes.
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Decision Trees Can Represent Any Boolean Function
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The tree will in the worst case require exponentially many nodes, however.

Decision Trees Provide Variable-Size Hypothesis Space
As the number of nodes (or depth) of tree increases, the hypothesis space
grows
o depth 1 (“decision stump”) can represent any boolean function of one feature.

o depth 2 Any boolean function of two features; some boolean functions involving three
features (c.g., (21 A @) V (-z1 A —x3)

e etc.

Learning Algorithm for Decision Trees

The same basic learning algorithm has been discovered by many people independently:

GROWTREE(S)
if (y = 0 for all (x,y) € S) return new leaf(0)
else if (y = 1 for all (x,y) € S) return new leaf(1)
else
choose best attribute a;
Sp=all (x,y) € S with z; =
Sy =all (x,y) € Swithzj = 1;
return new node(z;, GROWTREE(Sy), GROWTREE(S)))

Choosing the Best Attribute

One way to choose the best attribute is to perform a 1-step lookahead search and choose the
attribute that gives the lowest error rate on the training data.

CHOOSEBESTATTRIBUTE(S)
choose j to minimize .J;, computed as follows:
Sy =all (x,) € S with z; = 0;
Si=all (x,y) € S with z; = 1;
2% = the most common value of y in Sy
7 = the most common value of y in S
Jy = number of examples (x,y) € S with y # o
J = number of examples (x, y) € S with y # g
Jj = Jo+ Jy (total errors if we split on this feature)
return j




Choosing the Best Attribute—An Example
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Choosing the Best Attribute (3)

Unfortunately, this measure does not always work well, because it does not detect cases where
we arc making “progress” toward a good trec

A Better Heuristic From Information Theory

Let V be a random variable with the following probability distribution:

The surprise, S(V = v) of cach value of V' is defined to be

—1gP(V =v).

An cvent with probability 1 gives us zero surprise.

An event with probability 0 gives us infinite surprise!

It turns out that the surprise is equal to the number of bits of information that need to be
transmitted to a recipient who knows the probabilities of the results

This is also called the description length of V = v.

Fractional bits only make sense if they arc part of a longer message (c.g. describe a whole
sequence of coin tosses).

Entropy

The entropy of V', denoted H(V') is defined as follows:
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Entropy can be viewed as a measure of uncertainty.

Mutual Information

Now consider two random variables A and B that are not necessarily independent. The mutual
information between A and B is the amount of information we learn about B by knowning
the value of A (and vice versa—it is symmetric). It is computed as follows:

I(4;B) = H(B) ~ S P(B =1) - H(A|B = b)
b
In particular, consider the class Y of cach training example and the value of feature z; to be

random variables. Then the mutual information quantifies how much z; tells us about the
value of the class Y.

H(Y) = 09183

H(YIx1=0) =0.9710 H(YIx1=1) = 0.7219

1(Y:x1) = 0.0304

Visualizing Heuristics
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Mutual information works because it is a convex measure.




Non-Boolean Features

o Features with multiple discrete values
Construct a multiway split?
Test for one value versus all of the others?
Group the values into two disjoint subsets?

© Real-valued features
Consider a threshold split using each observed value of the feature.

Whichever method is used, the mutual information can be computed to choose the best split.

Learning Parity with Noise

When learning exclusive-or (2-bit parity), all splits look equally good. If extra random boolean
features are included, they also look equally good. Hence, decision tree algorithms cannot
distinguish random noisy features from parity features.

Attributes with Many Values

Problem:
o If attribute has many values, Gain will select it

o Imagine using Date = Jun_3_1996 as attribute

One approach: use GainRatio instead

Gain(S, A)

GainRatio(S, 4) = SplitInformation(S, A)
SplitInformation(S, A) = — Z l\%” log, ||Zl||
i=1

where S; is subset of S for which A has value v;

Unknown Attribute Values

‘What if some examples are missing values of A?
Use training example anyway, sort through tree

e If node n tests A, assign most common value of A
among other examples sorted to node n

e Assign most common value of A among other examples
with same target value

e Assign probability p; to each possible value v; of A
Assign fraction p; of example to each descendant in tree

Classify new examples in same fashion

Overfitting in Decision Trees

Outlook
Sunny  Overcast Rain

High Normal Strong Weak

No Yes No Yes

Consider adding a noisy training example:
Sunny, Hot, Normal, Strong, PlayTennis=No
What effect on tree?

Overfitting

Consider error of hypothesis h over

e training data: erroryrqin(h)

e entire distribution D of data: errorp(h)
Hypothesis h € H overfits training data if there is an
alternative hypothesis b’ € H such that

erroryrqin(h) < errorirain(h’)

and
errorp(h) > errorp(h’)




Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e Stop growing when data split not statistically
significant

e Grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data
e Measure performance over separate validation data set

e Add complexity penalty to performance measure

Reduced-Error Pruning
Split data into training and validation set

Do until further pruning is harmful:

1. Evaluate impact on walidation set of pruning each
possible node (plus those below it)

2. Greedily remove the one that most improves validation
set accuracy

Effect of Reduced-Error Pruning
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Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Converting A Tree to Rules

Sunny Overcast Rain

)

High Normal Strong Weak

No Yes No Yes




IF
THEN

IF
THEN

(Outlook = Sunny) AN D (Humidity = High)
PlayTennis = No

(Outlook = Sunny) AND (Humidity = Normal)
PlayTennis = Yes

Scaling Up
e ID3, C4.5, etc. assume data fits in main memory
(OK for up to hundreds of thousands of examples)

e SPRINT, SLIQ: multiple sequential scans of data
(OK for up to millions of examples)

e VFDT: at most one sequential scan
(OK for up to billions of examples)

Summary

* Inductive learning

¢ Decision trees

— Representation

— Tree growth

— Heuristics

— Overfitting and pruning
— Scaling up




