
1

Sessions 1 & 2
Introduction to AI;
Planning & Search

CSE 592
Applications of Artificial

Intelligence
Henry Kautz
Winter 2003

What is Intelligence?
What is Artificial Intelligence?

What is Artificial Intelligence?

� The study of the principles by which
natural or artificial machines
manipulate knowledge:
� how knowledge is acquired
� how goals are generated and achieved
� how concepts are formed
� how collaboration is achieved

. . . Exactly what the computer
provides is the ability not to be rigid
and unthinking but, rather, to behave
conditionally. That is what it means

to apply knowledge to action: It
means to let the action taken reflect

knowledge of the situation, to be
sometimes this way, sometimes that,

as appropriate. . . .

-Allen Newell

� Classical AI
Disembodied Intelligence

� Autonomous Systems
Embodied Intelligence

Classical AI

� The principles of intelligence are separate
from any hardware / software / wetware
implementation
� logical reasoning
� probabilistic reasoning
� strategic reasoning
� diagnostic reasoning

� Look for these principles by studying how
to perform tasks that require intelligence

2

Success Story: Medical Expert
Systems

� Mycin (1980)
� Expert level performance in diagnosis of

blood infections
� Today: 1,000�s of systems

� Everything from diagnosing cancer to
designing dentures

� Often outperform doctors in clinical trials
� Major hurdle today � non-expert part �

doctor/machine interaction

Success Story:
Chess

I could feel � I
could smell � a

new kind of
intelligence

across the table
- Kasparov

�Examines 5 billion positions /
second

�Intelligent behavior emerges
from brute-force search

Autonomous Systems

� In the 1990�s there was a growing concern
that work in classical AI ignored crucial
scientific questions:
� How do we integrate the components of

intelligence (e.g. learning & planning)?
� How does perception interact with

reasoning?
� How does the demand for real-time

performance in a complex, changing
environment affect the architecture of
intelligence?

� Provide a standard
problem where a wide
range of technologies
can be integrated and
examined

� By 2050, develop a team
of fully autonomous
humanoid robots that
can win against the
human world champion
team in soccer.

courtesy JPL

Started: January 1996
Launch: October 15th, 1998
Experiment: May 17-21

Speed & Capacity

3

Not Speed Alone…

• Speech Recognition
• “Word spotting” feasible today
• Continuous speech – rapid progress
• Turns out that “low level” signal not as

ambiguous as we once thought
• Translation / Interpretation / Question-answering

• Very limited progress
The spirit is willing but the flesh is weak. (English)

The vodka is good but the meat is rotten. (Russian)

Varieties of Knowledge

What kinds of knowledge required to understand –
• Time flies like an arrow.

• Fruit flies like a banana.

• Fruit flies like a rock.

1940's - 1960's: Artificial neural networks
• McCulloch & Pitts 1943

1950's - 1960's: Symbolic information processing
• General Problem Solver – Simon & Newell
• "Weak methods“ for search and learning
• 1969 - Minsky's Perceptrons

1940’s – 1970’s: Control theory for adaptive (learning) systems
• USSR – Cybernetics – Norbert Weiner
• Japan – Fuzzy logic

1970's – 1980’s: Expert systems
• “Knowledge is power" – Ed Feigenbaum
• Logical knowledge representation
• AI Boom

1985 – 2000: A million flowers bloom
• Resurgence of neural nets – backpropagation
• Control theory + OR + Pavlovian conditioning = reinforcement learning
• Probabilistic knowledge representation – Bayesian Nets – Judea Pearl
• Statistical machine learning

2000’s: Towards a grand unification
• Unification of neural, statistical, and symbolic machine learning
• Unification of logic and probabilistic KR
• Autonomous systems

Historic
Perspective

� In sum, technology can be
controlled especially if it is

saturated with intelligence to watch
over how it goes, to keep accounts,
to prevent errors, and to provide

wisdom to each decision.

-Allen Newell

Course Mechanics

Topics
• What is AI?
• Search, Planning, and Satisfiability
• Bayesian Networks
• Statistical Natural Language Processing
• Decision Trees and Neural Networks
• Data Mining: Pattern Discovery in Databases
• Planning under Uncertainty and Reinforcement Learning
• Autonomous Systems Case Studies
• Project Presentations

Assignments
• 4 homeworks
• Significant project & presentation

Information
• http://www.cs.washington.edu/education/courses/592/03wi/

Planning & Search

Search – the foundation for all work in AI
• Deduction
• Probabilistic reasoning
• Perception
• Learning
• Game playing
• Expert systems
• Planning

R&N Ch 3, 4, 5, 11

4

19

Planning
• Input

– Description of set of all possible states of the world
(in some knowledge representation language)

– Description of initial state of world

– Description of goal

– Description of available actions
• May include costs for performing actions

• Output
– Sequence of actions that convert the initial state into

one that satisfies the goal

– May wish to minimize length or cost of plan

Classical Planning

• Simplifying assumptions
– Atomic time
– Actions have deterministic effects
– Agent knows complete initial state of the world
– Agent knows the effects of all actions
– States are either goal or non-goal states, rather

than numeric utilities or rewards
– Agent is sole cause of change

• All these assumptions can be relaxed, as we
will see by the end of the course…

Example:
Route

Planning

Input:
• State set

• Start state

• Goal state test

• Operators

Output:

Example: Robot Control
(Blocks World)

Input:
• State set

• Start state

• Goal state test

• Operators (and costs)

Output:

Implicitly Generated Graphs
• Planning can be viewed as finding paths in a graph, where the graph is

implicitly specified by the set of actions

• Blocks world:

– vertex = relative positions of all blocks

– edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)

stack(blue,table)

stack(green,blue)

How many
states for K

blocks?

24

Missionaries and Cannibals

• 3 missionaries M1, M2, M3

• 3 cannibals C1, C2, C3

• Cross in a two person boat, so that
missionaries never outnumber
cannibals on either shore

• What is a state? How many states? M1 M2 M3

C1 C2 C3

5

STRIPS Representation

• Description of initial state of world
Set of propositions that completely describes a world

{ (block a) (block b) (block c) (on-table a)
(on-table b) (clear a) (clear b) (clear c)
(arm-empty) }

• Description of goal (i.e. set of desired worlds)
Set of propositions that partially describes a world

{ (on a b) (on b c) }

• Description of available actions

How Represent Actions?

• World = set of propositions true in that world
• Actions:

– Precondition: conjunction of propositions
– Effects: propositions made true & propositions made

false (deleted from the state description)

operator: stack_B_on_R

precondition: (on B Table) (clear R)

effect: (on B R) (:not (clear R))

Action Schemata

(:operator pickup
:parameters ((block ?ob1))
:precondition (:and (clear ?ob1) (on-table ?ob1)

(arm-empty))
:effect (:and (:not (on-table ?ob1))

(:not (clear ?ob1))
(:not (arm-empty))
(holding ?ob1)))

• Compact representation of a large set of actions

Search Algorithms

Backtrack Search
1. DFS
2. BFS / Dijkstra’s Algorithm
3. Iterative Deepening
4. Best-first search
5. A*

Constraint Propagation
1. Forward Checking
2. k-Consistency
3. DPLL & Resolution

Local Search
1. Hillclimbing
2. Simulated annealing
3. Walksat

Depth First Search

a

b

d e

c

f g h

• Maintain stack of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

Not for infinite spaces

O(b^d)

O(d)

Breadth First Search

a

b c

d e f g h

• Maintain queue of nodes to visit

• Evaluation
– Complete?

– Time Complexity?

– Space Complexity?

Yes

O(b^d)

O(b^d)

6

Iterative Deepening Search

• DFS with limit; incrementally grow limit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

Yes

O(b^d)

O(d)
b

d e

c

f g h

a

b c

a

Dijkstra’s Shortest Path
Algorithm

• Like breadth-first search, but uses a priority queue
instead of a FIFO queue:
– Always select (expand) the vertex that has a lowest-cost

path from the initial state

• Correctly handles the case where the lowest-cost
path to a vertex is not the one with fewest edges
– Handles actions planning with costs, with same

advantages / disadvantages of BFS

Pseudocode for Dijkstra

• Initialize the cost of each vertex to ∞
• cost[s] = 0;

• heap.insert(s);

• While (! heap.empty())
n = heap.deleteMin()

For (each vertex a which is adjacent to n along edge e)

if (cost[n] + edge_cost[e] < cost[a]) then

cost [a] = cost[n] + edge_cost[e]

previous_on_path_to[a] = n;

if (a is in the heap) then heap.decreaseKey(a)

else heap.insert(a)

Important Features

• Once a vertex is removed from the head, the cost
of the shortest path to that node is known

• While a vertex is still in the heap, another shorter
path to it might still be found

• The shortest path itself from s to any node a can
be found by following the pointers stored in
previous_on_path_to[a]

Edsger Wybe Dijkstra
(1930-2002)

• Invented concepts of structured programming,
synchronization, weakest precondition, and semaphores

• 1972 Turing Award

• “In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.”

Heuristic Search

• A heuristic is:
– Function from a state to a real number

• Low number means state is close to goal

• High number means state is far from the goal

Designing a good heuristic is very important!

(And often hard! Later we will see how

some heuristics can be created automatically)

7

An Easier Case

• Suppose you live in Manhattan; what do you do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

Best-First Search

• The Manhattan distance (∆ x+ ∆ y) is an estimate
of the distance to the goal
– a heuristic value

• Best-First Search
– Order nodes in priority to minimize estimated distance

to the goal h(n)

• Compare: BFS / Dijkstra
– Order nodes in priority to minimize distance from the

start

Best First in Action

• Suppose you live in Manhattan; what do you do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

Problem 1: Led Astray

• Eventually will expand vertex to get back on the
right track

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S G

Problem 2: Optimality

• With Best-First Search, are you guaranteed a
shortest path is found when
– goal is first seen?

– when goal is removed from priority queue (as with
Dijkstra?)

Sub-Optimal Solution
• No! Goal is by definition at distance 0: will be

removed from priority queue immediately, even if
a shorter path exists!

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

h=2

h=1
h=4

h=5

8

Synergy?

• Dijkstra / Breadth First guaranteed to find optimal
solution

• Best First often visits far fewer vertices, but may
not provide optimal solution

– Can we get the best of both?

A* (“A star”)

• Order vertices in priority queue to minimize

• (distance from start) + (estimated distance to
goal)

• f(n) = g(n) + h(n)

• f(n) = priority of a node

• g(n) = true distance from start

• h(n) = heuristic distance to goal

Optimality
• Suppose the estimated distance (h) is

always less than or equal to the true distance to the
goal

– heuristic is a lower bound on true distance

– heuristic is admissible

• Then: when the goal is removed from the priority
queue, we are guaranteed to have found a shortest
path!

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

55052nd & 9th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

54151st & 9th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
75250th & 9th

53251st & 8th

72552nd & 4th

f(n)h(n)g(n)vertex

9

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
74350th & 8th

75250th & 9th

52351st & 7th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

73450th & 7th

74350th & 8th

75250th & 9th

51451st & 6th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

73450th & 7th

74350th & 8th

75250th & 9th

50551st & 5th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
73450th & 7th

74350th & 8th

75250th & 9th

72552nd & 4th

f(n)h(n)g(n)vertex

DONE!

What Would Dijkstra Have
Done?

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

49th St

48th St

47th St

Proof of A* Optimality

• A* terminates when G is popped from the heap.

• Suppose G is popped but the path found isn’t optimal:

priority(G) > optimal path length c

• Let P be an optimal path from S to G, and let N be the last vertex on that
path that has been visited but not yet popped.

There must be such an N, otherwise the optimal path would have
been found.

priority(N) = g(N) + h(N) ≤ c
• So N should have popped before G can pop. Contradiction.

S

N

G
non-optimal path to G

portion of optimal
path found so far

undiscovered portion
of shortest path

10

What About Those Blocks?

• “Distance to goal” is not always physical distance

• Blocks world:
– distance = number of stacks to perform

– heuristic lower bound = number of blocks out of place

out of place = 1, true distance to goal = 3

3-Blocks State
Space Graph

ABC
h=2

C
AB
h=3

B
AC
h=2

A
BC
h=1

C
BA
h=3

A
CB
h=2

B
CA
h=1

B
C
A
h=3

C
B
A
h=3

C
A
B
h=3

A
C
B
h=3

B
A
C
h=2

A
B
C
h=0

start goal

3-Blocks
Best First
Solution ABC

h=2

C
AB
h=3

B
AC
h=2

A
BC
h=1

C
BA
h=3

A
CB
h=2

B
CA
h=1

B
C
A
h=3

C
B
A
h=3

C
A
B
h=3

A
C
B
h=3

B
A
C
h=2

A
B
C
h=0

start goal

3-Blocks BFS
Solution

ABC
h=2

C
AB
h=3

B
AC
h=2

A
BC
h=1

C
BA
h=3

A
CB
h=2

B
CA
h=1

B
C
A
h=3

C
B
A
h=3

C
A
B
h=3

A
C
B
h=3

B
A
C
h=2

A
B
C
h=0

expanded, but not
in solution

start goal

3-Blocks A*
Solution

ABC
h=2

C
AB
h=3

B
AC
h=2

A
BC
h=1

C
BA
h=3

A
CB
h=2

B
CA
h=1

B
C
A
h=3

C
B
A
h=3

C
A
B
h=3

A
C
B
h=3

B
A
C
h=2

A
B
C
h=0

expanded, but not
in solution

start goal

Maze Runner Demo

11

Other Real-World Applications

• Routing finding – computer networks, airline
route planning

• VLSI layout – cell layout and channel routing

• Production planning – “just in time” optimization

• Protein sequence alignment

• Many other “NP-Hard” problems
– A class of problems for which no exact polynomial

time algorithms exist – so heuristic search is the best
we can hope for

Importance of Heuristics

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

• h1 = number of tiles in the wrong place

• h2 = sum of distances of tiles from correct location

7 2 3

8 5

4 1 6

A* STRIPS Planning

• Is there some general way to automatically create a
heuristic for a given set of STRIPS operators?

1. Count number of false goal propositions in current
state

Admissible?

2. Delete all preconditions from actions, solve easier
relaxed problem (why easier?), use length

Admissible?

3. Delete negative effects from actions, solve easier
relaxed problem, use length

Admissible?

Planning as A* Search

• HSP (Geffner & Bonet 1999), introduced
admissible “ignore negative effects” heuristic

• FF (Hoffman & Nebel 2000), used a modified
non-admissible heuristic
– Often dramatically faster, but usually non-optimal

solutions found

– Best overall performance AIPS 2000 planning
competition

Search Algorithms

Backtrack Search
1. DFS
2. BFS / Dijkstra’s Algorithm
3. Iterative Deepening
4. Best-first search
5. A*

Constraint Propagation
1. Forward Checking
2. k-Consistency
3. DPLL & Resolution

Local Search
1. Hillclimbing
2. Simulated annealing
3. Walksat

Guessing versus Inference

All the search algorithms we’ve seen so far are
variations of guessing and backtracking

But we can reduce the amount of guesswork by
doing more reasoning about the
consequences of past choices

• Example: planning a trip

Idea:
• Problem solving as constraint

satisfaction
• As choices (guesses) are made,

propagate constraints

12

Map Coloring CSP

• V is a set of variables v1, v2, …, vn
• D is a set of finite domains D1, D2, …, Dn
• C is a set of constraints C1, C2, …, Cm

Each constraint specifies a restriction over
joint values of a subset of the variables

E.g.:
v1 is Spain, v2 is France,

v3 is Germany, …
Di = { Red, Blue, Green} for all i

For each adjacent vi, vj
there is a constraint Ck

(vi,vj) ∈∈∈∈ { (R,G), (R,B), (G,R), (G,B), (B,R), (B,G) }

Variations

• Find a solution that satisfies all constraints
• Find all solutions
• Find a “tightest form” for each constraint

(v1,v2) ∈∈∈∈ { (R,G), (R,B), (G,R), (G,B), (B,R), (B,G) }

!

(v1,v2) ∈∈∈∈ { (R,G), (R,B), (B,G) }

• Find a solution that minimizes some
additional objective function

Chinese Dinner Constraint Network

Soup

Total Cost
< $30

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both
Spicy

Exploiting CSP Structure

Interleave inference and guessing
• At each internal node:

• Select unassigned variable
• Select a value in domain
• Backtracking: try another value

– Branching factor?

• At each node:
• Propagate Constraints

Running Example: 4 Queens

Variables:

Q1 ∈∈∈∈ {1,2,3,4}
Q2 ∈∈∈∈ {1,2,3,4}
Q3 ∈∈∈∈ {1,2,3,4}
Q3 ∈∈∈∈ {1,2,3,4} Q

Q

Q

Q

24

14

13

31

42

41

Q2Q1

Constraints:

13

Constraint Checking

Q xQ

x

Q

xxQ

xx

xQ

x

xQ

x

x

Q

xxQ

Qx

x

Q

xxxQ

xQx

xx

xQ

Takes 5 guesses to determine first guess was wrong

Forward Checking

xxxQ

x

x

x

xxxQ

xxx

xxQ

xx

xxxQ

xx

xx

xxQ

xxxQ

xQx

xxx

xxQ

Takes 3 guesses to determine first guess was wrong

When variable is set,
immediately remove
inconsistent values from
domains of other variables

Arc Consistency

xxxQ

x

x

x

xxxQ

x

x

x

xxQ

xx

x

x

xxQ

xx

xx

xx

Iterate forward checking

Propagations:

1. Q3=3 inconsistent with Q4 ∈∈∈∈ {2,3,4}

2. Q2=1 and Q2=2 inconsistent with Q3 ∈∈∈∈ {1}

Inference alone determines first guess was wrong!

Huffman-Clowes
Labeling

++
++

++
-

Waltz’s Filtering: Arc-
Consistency

•Lines: variables

•Conjunctions: constraints

•Initially Di = {+,-, """", ####)

•Repeat until no changes:

Choose edge (variable)

Delete labels on edge not
consistent with both
endpoints

No labeling!

14

Path Consistency

Path consistency (3-consistency):
• Check every triple of variables
• More expensive!
• k-consistency:

• n-consistency: backtrack-free search

1

| | k-tuples to check

Worst case: each iteration eliminates 1 choice

| || | iterations

| || | steps! (But usually not this bad)

k

k

V

D V

D V +

Variable and Value Selection

• Select variable with smallest domain – why?

• Which values to try first?

• Why different?

• Tie breaking?

Variable and Value Selection

• Select variable with smallest domain
– Minimize branching factor
– Most likely to propagate: most constrained variable

heuristic

• Which values to try first?
– Most likely value for solution
– Least propagation! Least constrained variable

• Why different?
– Every constraint must be eventually satisfied
– Not every value must be assigned to a variable!

• Tie breaking?
– In general randomized tie breaking best – less likely to

get stuck on same bad pattern of choices

N-queens Demo

Board size 15
Delay 6
Deterministic vs. Randomized tie breaking

CSPs in the real world

• Scheduling Space Shuttle Repair

• Transportation Planning

• Computer Configuration
– AT&T CLASSIC Configurator

• #5ESS Switching System

• Configuring new orders: 2 months # 2 hours

Planning as CSP
• Phase 1 - Convert planning problem in a CSP

• Choose a fixed plan length

• Boolean variables
– Action executed at a specific time point
– Proposition holds at a specific time point

• Constraints
– Initial conditions true in first state, goals true in final state
– Actions do not interfere
– Relation between action, preconditions, effects

• Phase 2 - Solution Extraction
• Solve the CSP

15

85

Planning Graph Representation of CSP

Proposition
Init State

Action
Time 1

Proposition
Time 1

Action
Time 2

Precondition
constraints

Effect
constraints

Constructing the planning graph…

• Initial proposition layer
– Just the initial conditions

• Action layer i
– If all of an action’s preconditionss are in i-1

– Then add action to layer I

• Proposition layer i+1
– For each action at layer i

– Add all its effects at layer i+1

87

Mutual Exclusion

• Actions A,B exclusive (at a level) if

– A deletes B’s precondition, or

– B deletes A’s precondition, or

– A & B have inconsistent preconditions

• Propositions P,Q inconsistent (at a level) if

– All ways to achieve P exclude all ways to achieve Q

• Constraint propagation (arc consistency)

– Can force variables to become true or false

– Can create new mutexes

88

Solution Extraction

• For each goal G at time t
– For some action A making G true @t

• If A isn’t mutex with a previously chosen action, select it

• If no actions work, backup to last G (breadth first search)

• Recurse on preconditions of actions selected, t-1

Proposition
Init State

Action
Time 1

Proposition
Time 1

Action
Time 2

89

Graphplan

• Create level 0 in planning graph

• Loop
– If goal ⊆ contents of highest level (nonmutex)

– Then search graph for solution
• If find a solution then return and terminate

– Else Extend graph one more level

A kind of double search: forward direction checks necessary

(but insufficient) conditions for a solution, ...

Backward search verifies...

Dinner Date

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:
(:operator carry :precondition

:effect (:and (noGarbage) (:not (cleanHands)))
(:operator fire :precondition

:effect (:and (noGarbage) (:not (paper)))
(:operator cook :precondition (cleanHands)

:effect (dinner))
(:operator wrap :precondition (paper)

:effect (present))

16

Planning Graph
noGarb

cleanH

paper

dinner

present

carry

fire

cook

wrap

cleanH

paper

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Are there any exclusions?
noGarb

cleanH

paper

dinner

present

carry

fire

cook

wrap

cleanH

paper

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Do we have a solution?
noGarb

cleanH

paper

dinner

present

carry

fire

cook

wrap

cleanH

paper

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Extend the Planning Graph
noGarb

cleanH

paper

dinner

present

carry

fire

cook

wrap

carry

fire

cook

wrap

cleanH

paper

noGarb

cleanH

paper

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop

One (of 4) Possibilities
noGarb

cleanH

paper

dinner

present

carry

fire

cook

wrap

carry

fire

cook

wrap

cleanH

paper

noGarb

cleanH

paper

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Summary Planning

• Reactive systems vs. planning

• Planners can handle medium to large-sized problems

• Relaxing assumptions
– Atomic time
– Agent is omniscient (no sensing necessary).
– Agent is sole cause of change
– Actions have deterministic effects

• Generating contingent plans
– Large time-scale Spacecraft control

17

Coming Up

• Logical reasoning

• Planning as satisfiability testing

• Local search

• Start thinking about a project!

