CSE 592 Applications of Artificial Intelligence

Winter 2003

Probabilistic Reasoning

1) Parent	ts $U_1 \dots l$	Uk include a	ll causes (car	add leak node)
ב) indept	$P(X U_1.$	$U_j, \neg U_{j+}$	$_1 \dots \neg U_k) =$	$1 - \prod_{i=1}^{j} q_i$
Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.2$

In-Class Exercise

- In groups of 2 or 3, sketch the structure of Bayes net that would be useful for diagnosing printing problems with Powerpoint
- How could the network be used by a Help wizard?
- 15 minutes

Outline

- $\diamondsuit~$ Exact inference by enumeration
- \diamondsuit Exact inference by variable elimination
- \diamondsuit Approximate inference by stochastic simulation
- $\diamondsuit~$ Approximate inference by Markov chain Monte Carlo

Inference tasks

 $\begin{array}{l} \mbox{Simple queries: compute posterior marginal } \mathbf{P}(X_i|\mathbf{E}=\mathbf{e}) \\ \mbox{e.g.}, \ P(NoGas|Gauge=empty, Lights=on, Starts=false) \\ \mbox{Conjunctive queries: } \mathbf{P}(X_i, X_j|\mathbf{E}=\mathbf{e}) = \mathbf{P}(X_i|\mathbf{E}=\mathbf{e})\mathbf{P}(X_j|X_i, \mathbf{E}=\mathbf{e}) \\ \mbox{Optimal decisions: decision networks include utility information;} \\ \end{array}$

probabilistic inference required for *P*(*outcome*|*action*, *evidence*) Value of information: which evidence to seek next?

pter 14.4-5 3

 $\label{eq:sensitivity} Sensitivity analysis: which probability values are most critical? \\ Explanation: why do I need a new starter motor? \\$

AlMA2e Chapter 14.4-5 2

Approximate Inference in DBN's

- Most popular technique today is particle filtering
- Modification of a sampling technique called Likelihood Weighting
- Idea:
 - Fix evidence variables
 - Sample non-evidence variables
 - Weight each sample by the likelihood it accords the evidence

The Location Stack: Design and Sensor-Fusion for Location-Aware Ubicomp

Jeffrey Hightower

Principle 4: *Applications are concerned with activities.*

- Dinner is in progress.
- A presentation is going on in Mueller 153.
- Jeff is walking through his house listening to The Beatles.
- Jane is dispensing ethylene-glycol into beaker #45039.
- Elvis has left the building.

Location Stack Supported Technologies

- 1. VersusTech commercial infrared badge proximity system
- 2. RF Proximity using the Berkeley motes
- 3. SICK LMS-200 180° infrared laser range finders
- 4. MIT Cricket ultrasound range beacons
- 5. Indoor harmonic radar, in progress
- 6. 802.11b WiFi triangulation system, in progress
- 7. Cellular telephone E-OTD, planned

Person Tracking with Anonymous and Id-Sensors: Motivation

- · Accurate anonymous sensors exist
- Id-sensors are less accurate but provide explicit object identity information.

Person Tracking with Anonymous and Id-Sensors: Concept

- Use Rao-Blackwellised particle filters to efficiently estimate locations
 - 1. Each particle is an association history between Kalman filter object tracks and observations.
 - Due to initial id uncertainty, starts by tracking using only anonymous sensors and estimating object id's with sufficient statistics.
 - Once id estimates are certain enough, sample id them using a fully Rao-Blackwellised particle filter over both object tracks and id assignments.

[Fox, Hightower, and Schulz., Submitted to IJCAI, 2003]

Conclusion

Relying on a single location technology to support all UbiComp applications is inappropriate. Instead, the Location Stack provides:

- The ability to fuse measurements from many technologies including both anonymous and id-sensors while preserving sensor uncertainty models.
- Design abstractions enabling system evolution as new sensor technologies are created.
- 3. A common vocabulary to partition the work and research problems appropriately.

Future Work

- Further evaluate the Location Stack through use in real research and commercial applications.
- Collaboration with machine learning community to work on contextual fusion and activity inference.