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Probabilistic Reasoning

Basics

¢ Random variable

Cavity: yesor no
P(Cavity) = 0.1
e A Ach No Ach
« Conditional Probability - e [t
PAB) Cavity 0,04 0.06
P(Cavity | Toothache) = 0.8 No Cavity| 001 | 089

« Joint Probability Distribution
(# variables)* vaues) numbers

« BayesRule
P(BIA) = P(AIB)P(B) / P(A)

¢ (Conditional) Independence
P(AIC) = P(A)
P(A|P.C)=PA|C)

[ Bayesian networks J

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link & “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X for each combination of parent values
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| Example ]

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call

| Example contd. ]

mmas|w
maT s

P(JIA) A [P(MIA)

@ T| 90 T| 70
F| 05 Fl| o1
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[ Compactness ]
A CPT for Boolean X; with k Boolean parents has

2% rows for the combinations of parent values G @
Each row requires one number p for X; = true 0

(the number for X; = false is just 1 — p) @ @

If each variable has no more than & parents,
the complete network requires O(n - 2*) numbers

le., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1+ 1+ 4+ 2+ 2=10 numbers (vs. 2° — 1 = 31)
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[ Global semantics |

Global semantics defines the full joint distribution

as the product of the local conditional distributions: @ @
P(Xy,..., X,) = [[[_ P(X;|Parents(X,)) (R
eg, P(GAmAaN-bA-e) O @

[ Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

[ Constructing Bayesian networks J

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1,..., X,
2. Fori=1ton
add X to the network
select parents from X,..., X; 1 such that
P(X;|Parents(X;)) = P(X;| Xy, ..., X;1)

This choice of parents guarantees the global semantics:

P(Xy,...,X,) = '\ P(Xi[ Xy, ..., Xi-1) (chain rule)
= II'_,P(X;| Parents(X;)) (by construction)
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| Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?

ADMA Chapter 1013
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| Example ]

Suppose we choose the ordering M, J, A, B, E

CED!
Camears)

P(JIM) = P(J)? No
P(A|J,M) = P(A|J)? P(AlJ, M) = P(A)?
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| Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No

P(A|J, M) = P(A]J)? P(A]J, M) = P(A)? No
P(B|A,J, M) = P(B|A)?

P(B|A, J,M) = P(B)?
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[ Example |

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No

P(A[J)? P(A]J, M) = P(A)? No
= P(B|A)? Yes

. = P(B)? No

E|B, A,J, M) = P(E|A)?

E|B,A,J, M) = P(E|A, B)?

[ Example i

Suppose we choose the ordering M, J, A, B, E

Earthquake
J|M) = P(J)? No -

(

(A[J, M) = P(A]J)? P(A]J, M) = P(A)? No
(B|A, J, M) = P(B|A)? Yes

(B|A,J,M) = P(B)? No

(E|B, A, J, M) = P(E|A)? No

(E|B, A, J, M) = P(E|A,B)? Yes

[ Example contd. J

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)

A i ditional probabilities is hard in noncausal directions

Network is less compact: 1+ 2+ 4 + 2+ 4 =13 numbers needed
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| Example: Car diagnosis ]

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
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I Example: Car insurance ]

——
NN

Tedical Cost
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| Compact conditional distributions J

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < CanadianV USV Mexican
E.g., numerical relationships among continuous variables
OLevel

T inflow + precipitation - outflow - evaporation
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[ Compact conditional distributions contd. |

Noisy-OR distributions model multiple noninteracting causes
1) Parents U, ... Uy include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone
= P(X|Uy...Uj,~Ujsr...~U) =1 =1I_q;

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=02x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=10.6 x 0.2 x 0.1

Number of parameters linear in number of parents

| Hybrid (discrete+continuous) networks |

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)

[ Continuous child variables |

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost=c|Harvest =h, Subsidy? = true)
= N(ash +b;,00)(c)

1 1(c— (ah+b)\?
e[

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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| Discrete variable w/ continuous parents J

Probability of Buys? given C'ost should be a “soft” threshold:
T

P(Buys?=falselCost=c)

Coste
Probit distribution uses integral of Gaussian:

D(z) =1 “N(0,1)(z)dz
P(Buys? =true | Cost=c) = ®((—c+ p)/0)
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| Why the probit? ]

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

COREENC

0>
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[ Summary |

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables => parameterized distributions (e.g., linear Gaussian)
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In-Class Exercise

* In groups of 2 or 3, sketch the structure of
Bayes net that would be useful for
diagnosing printing problems with
Powerpoint

How could the network be used by a Help
wizard?

15 minutes

[ Outline |

{ Exact inference by enumeration
{ Exact inference by variable elimination
{ Approximate inference by stochastic simulation

{ Approximate inference by Markov chain Monte Carlo

[ Inference tasks |

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=e) = P(X;|E=¢)P(X;|X;, E=e¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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| Inference by enumeration ]

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) © (B
=P(B,j,m)/P(j,m) (A}
=aP(B,j,m)

=aX.X,P(B,e,a,j,m) O Q)

Rewrite full joint entries using product of CPT entries:
P(Blj,m)
=aX.XP(B)P(e)P(a|B,e)P(jla)P(m|a)

= aP(B)L.P(e)X,P(a|B,e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time

A Chapter 1445 4

[ Evaluation tree |

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of e

P(alb,e) P(~alb,e) P(alb—e) P(—alb~e)
95 .05 .94 .06

P(jla)
90

P(jlma) P(jla) P(jlma)
05 .90 05

P(mla)
.70

P(ml=a) P(mla) P(ml=a)
.01 70 oL
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| Inference by variable elimination ]

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
=aP(B) e _(~) a\B €) i\a (mla)
- P (S, PO PalB e Pl u(a)
=aP(B) (e)XaP(a|B,e)fs(a)fula)
= aP(B)L.P(e)Lafa(a, b e)fi(a)fu(a)
=aP(B) (e)f‘m(b e) (sum out A)
= aP(B)fpan(b) (sum out E)
= ) su(b)

M Chapter 1445 T




[ Complexity of exact inference |

Singly connected networks (or polytrees):
- any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d*n)

Multiply connected networks:
— can reduce 3SAT to exact inference => NP-hard
- equivalent to counting 3SAT models = #P-complete

1.AvBvC
22CvDv-A
3.BvCv-D

[ Inference by stochastic simulation i

Basic idea:
1) Draw NN samples from a sampling distribution S

2) Compute an approximate posterior probability P

3) Show this converges to the true probability P
Outline:

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

| Example ]

C [P(SIC) C [PRIC)
T| .10 T | .80
F| 50 F| 20

Grass

S R|P(WISR)

TT 9

T F .90

FT 90

F F 01
C [P(SIC) C [PRIC)
T| .10 T | .80
F| 50 F| 20

Wet
Grass

IP(WIS.R)

R

T 99
F .90
T 90
F 01

mm=|l®»
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C |P(SIC) C |PRIC)
T| .10 @ T| .80
F| 50 F| 20

Grass
S R[P(WIS,R)
T T| .9
T F| .90
FE T| .9
F F| .01
C |P(SIC) C |PRIC)
T| .10 T| .80
F| 50 F| 20

Wet
Grass

P(WIS,R)

R

T 99
F .90
T 90
F 01

mmee S|
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[ Example |

[ Example

C |P(SIC) C |P(RIC)
T | .10 @ T| .80
F| 50 F| 20
Grass

S R[P(WISR)

TT 99

T F 90

FT 90

F F 01

C [P(SIC) C [P(RIC)
T| .10 T | .80
F| 50 F| 20
Grass
S RIP(WISR)
TT 99
T F 90
FT 2
F F 01
| Example ]
C [P(SIC) C [PRIC)
T| .10 @ T | .80
F| 50 F| 20
Wet
Grass
S R|P(WISR)
TT 9
T F .90
FT 920
F F 01

[ Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(1...xq) = [I'_ P(xi| Parents(X;)) = P(x1 ... x,)
i.e., the true prior probability

E.g., Sps(t, f,t,t) = 0.5x0.9x 0.8 x 0.9 = 0.324 = P(t, f,t,t)
Let Npg(x1...x,) be the number of samples generated for event z1, ...,
Then we have

lim P(zy,...,z
Nooo

= Jim Nps(z1,...,2n)/N
= Sps(a1, n)
= P(z1...zq)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(z1, ... \Tn) R Py . 20)

ADMA Chapter 1045
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| Rejection sampling ]

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero
for j=1to N do
X 4 PRIOR-SAMPLE(bn)
if x is consistent with e then
N[1] ¢~ N[z]+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain = true and 19 have Rain = false.

f’(Ram

Sprinkler =true) = NORMALIZE((8,19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure

AMAZ Chapter 1445

| Analysis of rejection sampling

P(X|e) = aNpg(X, e) (algorithm defn.)
= Npg(X,e)/Nps(e) (normalized by Nps(e))
~ P(X,e)/P(e) (property of PRIORSAMPLE)
=P(Xle) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!

AIMAZ Chapter 1445
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] Markov Chain Monte Carlo

MCMC with Gibbs Sampling

CSE 592

Fix the values of observed variables
Set the values of all non-observed variables randomly

Perform a random walk through the space of complete
variable assignments. On each move:

1. Pick a variable X
2. Calculate Pr(X=true | all other variables)
3. Set X to true with that probability

Repeat many times. Frequency with which any variable X is
true is it's posterior probability.

Converges to true posterior when frequencies stop changing
significantly

Markov Blanket Sampling

How to calculate Pr(X=true | all other variables) ?

Recall: avariable is independent of all others given it's
Markov Blanket

* parents
« children
« other parents of children
So problem becomes calculating Pr(X=true | MB(X))
« We solve this sub-problem exactly
« Fortunately, it is easy to solve

P(X)=aP(X |Parents(X)) [] P(Y|Parents(Y))

YeChildren(X)

CSE 592

Example

P
0.8
s P(s) 01
T 0.6
F 0.1
Evidence:
T — S=true, B=true
H L P(b) of breath
T T 0.9
T F 0.8
F T 0.7
F F 0.1

CSE 592

. stable distribution, mixing
Example
P(X)=aP(X |Parents(X)) [] P(Y|Parents(Y))
YeChildren(X)
(») _ P(X,AB,C)
PEIRBE ey
° o _P(AP(X|AP(C)P(B| X,C)
P(AB,C)
_| P(AP(C)
e _[P(A’B’C)}P(X|A)P(B|X,C)
=aP(X |AP(B| X,C)
Example 2

- S P()
S P(h) F 0.1
T 0.6

disease
Evidence:
e eSS S=true, B=true

H L P(b) of breath Randomly set H=false, L=true
T T 0.9
T F 0.8
F T 0.7
F F 0.1
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Example 3

s_TP0

0.8
S P(h) 0.1
T 0.6
F 0.1
Sample H:
shortness P(hls,l,b)=aP(h|s)P(blh,l)
H L P(b) of breath = 0(0.6)(0.9)= 0. 0.54
T T 0.9 P(=hls,l,b)=cP(=h|s)P(b| =h,l)
T F 0.8 = 0(0.4)(0.7)= 0. 0.28
F T 0.7 Normalize: 0.54/(0.54+0.28)=0.66
F F 0.1 Flip coin: H becomes true (maybe)
CSE 592
Example 5: Different Evidence
- S P
s [P F [o1
T 0.6
disease
Evidence:
shortness S=true, B=false
H L P(b) of breath
T T 0.9
T F 0.8
F T 0.7
F F 0.1
CSE 592
Example 7
s _TP0
0.8
EG 0.1
T 0.6
F 0.1
Sample H:
<hortness P(h|s.l,=b)=aP(h|s)P(—blh,))
H L P(b) of breath =(0.6)(0.1)= @ 0.06
T T 0.9 P(=hls,l,=b)=aP(=h|s)P(—b| —=h,I)
T F 0.8 =0(0.4)(0.3)= 0. 0.12
F T 0.7 Normalize: 0.06/(0.06+0.12)=0.33
F F 0.1 Flip coin: H stays false (maybe)

CSE 592

Example 4
P(s)
T Tas
smoking T 08
S P(h) F 0.1
T 0.6
disease
Sample L:
shortness P(l|s,h,b)=aP(l|s)P(blh,I)
H L P(b) of breath =0(0.8)(0.9)= 2. 0.72
T T 0.9 P(=l|s,h,b)=aP(—l|s)P(b] h, = 1)
T F 0.8 =0(0.2)(0.8)= 0. 0.16
F T 0.7 Normalize: 0.72/(0.72+0.16)=0.82
F F 0.1 Flip coin: ...
CSE 502
Example 6
- S P()
EED F_|o1
T 0.6
disease
Evidence:
shortness S=true, B=false
H L P(b) of breath Randomly set H=false, L=true
T T 0.9
T F 0.8
F T 0.7
F F 0.1
CSE 502
Example 8
Tos
smoking T 08
EED F_|o1
T 0.6
disease
Sample L:
Shortness P(lls,~h,~b)=aP(l|s)P(=b|-h,))
H L P(b) of breath = 0/(0.8)(0.3)= 0. 0.24
T T 0.9 P(—l|s,—h,—b)=0P(—l|s)P(=b|-=h,— I)
T F 0.8 =0(0.2)(0.9)= . 0.18
F T 0.7 Normalize: 0.24/(0.24+0.18)=0.75
F F 0.1 Flip coin: ...
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I Summary |

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC: ‘ (and rejection sampling)

— LW does poorly when there is lots of (downstream) evidence

— LW, MCMC generally insensitive to topology

— Convergence can be very slow with probabilities close to 1 or 0

— Can handle arbitrary combinations of discrete and continuous variables

Outline ]

Time and uncertainty

Inference: filtering, prediction, smoothing

Hidden Markov models ~ (later on — next lecture)
Kalman filters (a brief mention)

Dynamic Bayesian networks

SO0

Particle filtering

Chapter 15

[ Time and uncertainty )

The world changes; we need to track and predict it

Diabetes vs vehicle di

Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar,, StomachContents,, etc.

E,; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar,;, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X, = Xy, Xgi1, .-y Xpo1, Xp

[ Markov processes (Markov chains) |

Construct a Bayes net from these variables: parents?
Markov assumption: X, depends on bounded subset of Xg,_;

First-order Markov process: P(X;|Xg,_1) = P(X;|X;—1)
Second-order Markov process: P(X;|Xo;—1) = P(X| X2, X;-1)

res —~ D~ ED—CEDO—~ED—~D
e D= =D =D

thl)

Sensor Markov assumption: P(E;|Xq., Eg;—1) = P(

Stationary process: transition model P(X,|X;_;) and
sensor model P (E;|X;) fixed for all ¢

[ Example |

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

I Inference tasks |

Filtering: P(X,|ey.)
belief state—input to the decision process of a rational agent

Prediction: P(X,.|e,) for k>0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xjle) for 0 < k<t
better estimate of past states, essential for learning

Most likely explanation: arg maxy, , P(xi.|e;.)
speech recognition, decoding with a noisy channel

10



[ DBNs vs. HMMs |

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Phin
Ko

O—® N

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20 x 23 = 160 parameters, HMM has 220 5 920 ~ 1012

99

Chptr 15 5

I Exact inference in DBNs ]

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢
Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"!), update cost O(d"*?)
(cf. HMM update cost O(d*"))

Chapir 15 35

Approximate Inference in DBN'’s

» Most popular technique today is particle
filtering

» Modification of a sampling technique
called Likelihood Weighting

* Idea:
— Fix evidence variables
— Sample non-evidence variables

— Weight each sample by the likelihood it
accords the evidence

| Likelihood weighting example ]

ED

¢ [psio)] C [PRIC)
T| .10 T| 30
F| 50 F| 20

&
R [P(WIS,R)
T .99

F .90
T
F

90
oL

Mmoo

w=10

ADMAZ Chapter 10,45 27

c [psio)] ¢ [pric)
T| 10 T| 80
F| 50 F| 20
S R[P(WISR)
T T| 9
TF| %
FTl %
F F| o
w=1.0
A o 145 0
| Likelihood weighting example ]
c [psio)] ¢ [pric)
T| 10 T| 80
F| 50 F| 20
S R[P(WISR)
T T| 9
TF| %
FTl %
F F| o
w=1.0

AIMAZ Chapter 1445 2%
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I Likelihood weighting example i [ Likelihood weighting example |
c ¢ [PRIC) ¢ [psio)] c [pric)
T T| 80 T| .10 T| 80
F F| 20 F| 50 F| 20
NG
S R[P(WIS.R) S R|P(WISR)
T T| 9 T T| 9
TE|[ %0 TF| %
FT| %0 F 1|l %
F E| o F F| ol
w=10x0.1 w=10x0.1
[ Likelihood weighting example J | Likelihood weighting example ]
c [psic)] ¢ [PRIC) c [psio)] c [pric)
T| .10 T| 80 T| .10 T| 80
F| 50 F| 20 F| 50 F| 20
S R[P(WIS.R) S R[P(WISR)
T T| 99 T T 9
TE[ %0 TF| %
FT| %0 F Tl 9%
F E| o F F| o1
w=1.0x0.1 w=1.0x0.1
AMAB 1045 31 Ak o 1445 3
[ Likelihood weighting example J [ Particle filtering |
Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space
Replicate particles proportional to likelihood for e;
c C [PRIC) Rain;  Rain,,; Rain, Rain
T T| 80
F Fl 20 true .

false

P(WIS,R)

() Propagate (b) Weight  (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Mmoo
mHT AR

99
.90
90
oL

Also used for simultaneous localization and mapping in mobile robots

w=1.0x0.1x0.99 = 0.099 10°-dimensional state space

ADMAZ Chapte 1145 2 Cmpa s W




| Particle filtering contd. |

Assume consistent at time t: N(x;|er,)/N = P(x;|e1,)
Propagate forward: populations of x;. are
N(xpr1]ens) = S, P(xear|xe) N (xe| e12)
Weight samples by their likelihood for e;.1:
W(xesilerest) = Plevafxe) N(xelew)
Resample to obtain populations proportional to 1V:

N(xer1levess)/N aW (xs1lerest) = aP (e [Xes1)N (X1 ler)

aP(epia]xi1) X, P (et x) N (x| er)
o' P(e1[xp41) X, P(Xe1[x0) P(xiferr)
P(xs1len)

Chapir1s 3

The Location Stack:
Design and Sensor-Fusion for
Location-Aware Ubicomp

Jeffrey Hightower

A survey & taxonomy of location
technologies

Ad hoc signal strength Physical contact DC magnetic pulses Cellular E-911

Infrared proximity Ultrasonic time of flight

Laser range-finding Stereovision

[Hightower and Borriello, IEEE Computer, Aug 2001]

The Location Stack
5 Principles T e

1. There are fundamental B e
measurement techniques. |

2. Therearestandard ways |
to combine measurements.

3. There are standard object | e
relationship queries. L&ﬁ(‘;{‘ | Fuson |

4. Applicationsare e
concerned with activities. 1ocionS| Messurements |

5. Uncertainty isimportant. I d Sensors

Contextual Fusion

% [Hightower, Brumitt, and Borriello, WMCSA, Jan 2002]

Principle 4: Applications are
concerned with activities.
* Dinnerisin progress.
A presentation is going onin Mueller 153.

« Jeff iswalking through his house listening
to The Bestles.

 Janeisdispensing ethylene-glycol into
beaker #45039.

* Elvis has|left the building.

Principle 5: Uncertainty is
important.
Example: routing phone calls to nearest handset
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8 [Hightower and Borriello, Ubicomp LMUC Workshop, Sep 2001]
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Fusion using Monte Carlo localization
(MCL)

p(m|x)
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MCL details
Motion models: P(x %) . )
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Sensor likelihood models: p(m | )
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2D MCL Example: Robocup

* 1 Object

o 2typesof N
M easurements e
Vision marker distance c
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+ Reddotismostlikely =7 .=« . .
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(x,y,orientation)

8 [Fox et al., Sequential Monte Carlo Methodsin Practice, 2000]

Adaptive MCL

»  Performance improvement: adjust sample
count to best represent the posterior.
1. Assume weknow the true Bel(x) represented
asamultinomial distribution.

2. Determine number of samples such that with
probability (1-p), the Kullback-Leibler
distance between the true posterior and the
particlefilter representation is lessthan €

[Fox, NIPS, 2002]

L ocation Stack |mplementation

World Map
Service /T MCL-based

Fusion
Engine(s)

Relationship
Database

[Sensor Driver] [Sensor Driver] [Sensor Driver]
T
Seﬁsor Set:sor Ser:sor
Hardware Hardware Hardware

Location Stack Supported
Technologies

1. VersusTech commercia infrared badge
proximity system

RF Proximity using the Berkeley motes

SICK LM S-200 180° infrared laser range finders
MIT Cricket ultrasound range beacons

Indoor harmonic radar, in progress

802.11b WiFi triangulation system, in progress
Cellular telephone E-OTD, planned

N o g~ wDd
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The Location Stack in action

Person Tracking with Anonymous
and 1d-Sensors: Motivation

 Accurate anonymous sensors exist

« |d-sensors are less accurate but provide
explicit object identity information.

87

Person Tracking with Anonymous
and Id-Sensors: Concept

Use Rao-Blackwellised particlefiltersto
efficiently estimate locations

1. Each particleisan association history between
Kalman filter object tracks and observations.

2. Duetoinitial id uncertainty, starts by tracking using
only anonymous sensors and estimating object id's
with sufficient statistics.

3. Onceid estimates are certain enough, sample id them
using afully Rao-Blackwellised particle filter over
both object tracks and id assignments.

[Fox, Hightower, and Schulz., Submitted to IJCAI, 2003]

" ;lﬂffasound Receiver
:|e Infrared Receiver
_aLaser Range-Tiinder
= FEn .

Experimental Setup

Person Tracking with Anonymous
and ld-Sensors: Result

¢ Our 2 phase Rao-Blackwellised particlefilter
algorithmis quite effective.
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Conclusion

Relying on a single location technology to support
all UbiComp applicationsisinappropriate. Instead,
the Location Stack provides:

1. The ability to fuse measurements from many technologies
including both anonymous and id-sensors while preserving
sensor uncertainty models.

2. Design abstractions enabling system evolution as new sensor
technologies are created.

3. A common vocabulary to partition the work and research
problems appropriately.

Future Work

« Further evaluate the Location Stack through
usein real research and commercial
applications.

« Coallaboration with machine learning
community to work on contextual fusion
and activity inference.
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