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Applications of Artificial 

Intelligence
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Probabilistic Reasoning
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• Random variable
Cavity: yes or no
P(Cavity) = 0.1

• Conditional Probability
P(A|B)
P(Cavity | Toothache) = 0.8

• Joint Probability Distribution
(# variables)(# values) numbers

• Bayes Rule
P(B|A) = P(A|B)P(B) / P(A)

• (Conditional) Independence
P(A|C) = P(A)
P(A | P,C) = P(A | C)

Basics

Cavity

No Cavity

0.04           0.06

0.01           0.89

Ache No Ache
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In-Class Exercise 

• In groups of 2 or 3, sketch the structure of 
Bayes net that would be useful for 
diagnosing printing problems with 
Powerpoint

• How could the network be used by a Help 
wizard?

• 15 minutes
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Markov Chain Monte Carlo

CSE 592

MCMC with Gibbs Sampling

Fix the values of observed variables
Set the values of all non-observed variables randomly
Perform a random walk through the space of complete 

variable assignments.  On each move:
1. Pick a variable X
2. Calculate Pr(X=true | all other variables)
3. Set X to true with that probability

Repeat many times.  Frequency with which any variable X is 
true is it’s posterior probability.

Converges to true posterior when frequencies stop changing 
significantly
• stable distribution, mixing

CSE 592

Markov Blanket Sampling

How to calculate Pr(X=true | all other variables) ?
Recall: a variable is independent of all others given it’s 

Markov Blanket
• parents
• children
• other parents of children

So problem becomes calculating Pr(X=true | MB(X))
• We solve this sub-problem exactly
• Fortunately, it is easy to solve
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Example
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Example

Evidence:
S=true, B=true

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(s)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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Example 2

Evidence:
S=true, B=true
Randomly set H=false, L=true

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(h)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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Example 3

Sample H:
P(h|s,l,b)=αP(h|s)P(b|h,l)
= α(0.6)(0.9)= α 0.54

P(¬h|s,l,b)=αP(¬h|s)P(b| ¬h,l)

= α(0.4)(0.7)= α 0.28
Normalize: 0.54/(0.54+0.28)=0.66

Flip coin: H becomes true (maybe)

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(h)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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Example 4

Sample L:
P(l|s,h,b)=αP(l|s)P(b|h,l)
= α(0.8)(0.9)= α 0.72

P(¬l|s,h,b)=αP(¬l|s)P(b| h, ¬ l)

= α(0.2)(0.8)= α 0.16
Normalize: 0.72/(0.72+0.16)=0.82

Flip coin: …

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(h)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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Example 5: Different Evidence

Evidence:
S=true, B=false

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(s)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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Example 6

Evidence:
S=true, B=false
Randomly set H=false, L=true

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(h)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)

CSE 592

Example 7

Sample H:
P(h|s,l,¬b)=αP(h|s)P(¬b|h,l)
= α(0.6)(0.1)= α 0.06

P(¬h|s,l,¬b)=αP(¬h|s)P(¬b| ¬h,l)

= α(0.4)(0.3)= α 0.12
Normalize: 0.06/(0.06+0.12)=0.33

Flip coin: H stays false (maybe)

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(h)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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Example 8

Sample L:
P(l|s,¬h,¬b)=αP(l|s)P(¬b|¬h,l)
= α(0.8)(0.3)= α 0.24

P(¬l|s,¬h,¬b)=αP(¬l|s)P(¬b|¬h,¬ l)

= α(0.2)(0.9)= α 0.18
Normalize: 0.24/(0.24+0.18)=0.75

Flip coin: …

smoking

heart
disease

lung
disease

shortness
of breath

0.1F

0.6T

P(h)S 0.1F

0.8T

P(l)S

0.1FF

0.7TF

0.8FT

0.9TT

P(b)LH

0.2

P(s)
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(and rejection sampling) (later on – next lecture)
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Approximate Inference in DBN’s

• Most popular technique today is particle 
filtering

• Modification of a sampling technique 
called Likelihood Weighting

• Idea:
– Fix evidence variables
– Sample non-evidence variables
– Weight each sample by the likelihood it 

accords the evidence
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The Location Stack:
Design and Sensor-Fusion for 

Location-Aware Ubicomp

Jeffrey Hightower

75

A survey & taxonomy of location 
technologies

Ad hoc signal strength GPS

Ultrasonic time of flight

DC magnetic pulses Cellular E-911

Infrared proximity

Physical contact

Laser range-finding Stereo vision

[Hightower and Borriello, IEEE Computer, Aug 2001]
76

The Location Stack
5 Principles

1. There are fundamental 
measurement techniques.

2. There are standard ways 
to combine measurements.

3. There are standard object 
relationship queries.

4. Applications are 
concerned with activities.

5. Uncertainty is important.

[Hightower, Brumitt, and Borriello, WMCSA, Jan 2002]

SensorsSensors

MeasurementsMeasurements

FusionFusion

ArrangementsArrangements

Contextual FusionContextual Fusion

ActivitiesActivities

IntentionsIntentions

NonNon--
LocationLocation
ContextContext

AbstractionsAbstractions

77

Principle 4: Applications are 
concerned with activities.

• Dinner is in progress.

• A presentation is going on in Mueller 153.

• Jeff is walking through his house listening 
to The Beatles.

• Jane is dispensing ethylene-glycol into 
beaker #45039.

• Elvis has left the building.

78

Principle 5: Uncertainty is 
important.

XX

Example: routing phone calls to nearest handset

[Hightower and Borriello, Ubicomp LMUC Workshop, Sep 2001]
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Fusion using Monte Carlo localization 
(MCL)

)...|()( 0mmxpxBel ttt =
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80

R B
distance

probability

MCL details

Sensor likelihood models: )|( tt xmp

Motion models: )|( 1−tt xxp

Stochastically shift
all particles

t+1 t+2
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2D MCL Example: Robocup

• 1 Object

• 2 types of 
Measurements
Vision marker distance

Odometry

• Red dot is most likely 
state.
(x,y,orientation)

[Fox et al., Sequential Monte Carlo Methods in Practice, 2000] 82

Adaptive MCL

• Performance improvement: adjust sample 
count to best represent the posterior.

1. Assume we know the true Bel(x) represented 
as a multinomial distribution.

2. Determine number of samples such that with 
probability (1-p), the Kullback-Leibler
distance between the true posterior and the 
particle filter representation is less than ε

[Fox, NIPS, 2002]

83

Location Stack Implementation

Sensor
Hardware

Sensor Driver

Sensor
Hardware

Sensor Driver

Sensor
Hardware

Sensor Driver

MCL-based
Fusion

Engine(s)

World Map
Service

Hierarchical 
Object

Relationship
Database

84

Location Stack Supported 
Technologies

1. VersusTech commercial infrared badge 
proximity system

2. RF Proximity using the Berkeley motes

3. SICK LMS-200 180º infrared laser range finders

4. MIT Cricket ultrasound range beacons

5. Indoor harmonic radar, in progress

6. 802.11b WiFi triangulation system, in progress

7. Cellular telephone E-OTD, planned



15

85

The Location Stack in action

86

Person Tracking with Anonymous 
and Id-Sensors: Motivation

• Accurate anonymous sensors exist

• Id-sensors are less accurate but provide 
explicit object identity information.

87

Person Tracking with Anonymous 
and Id-Sensors: Concept

• Use Rao-Blackwellised particle filters to 
efficiently estimate locations

1. Each particle is an association history between 
Kalman filter object tracks and observations.

2. Due to initial id uncertainty, starts by tracking using 
only anonymous sensors and estimating object id's 
with sufficient statistics.

3. Once id estimates are certain enough, sample id them 
using a fully Rao-Blackwellised particle filter over 
both object tracks and id assignments.

[Fox, Hightower, and Schulz., Submitted to IJCAI, 2003] 88

Experimental Setup

89

Experimental Setup

90

Person Tracking with Anonymous 
and Id-Sensors: Result

• Our 2 phase Rao-Blackwellised particle filter 
algorithm is quite effective.
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Conclusion
Relying on a single location technology to support 

all UbiComp applications is inappropriate.  Instead, 
the Location Stack provides:

1. The ability to fuse measurements from many technologies 
including both anonymous and id-sensors while preserving 
sensor uncertainty models.

2. Design abstractions enabling system evolution as new sensor 
technologies are created.

3. A common vocabulary to partition the work and research 
problems appropriately.

92

Future Work

• Further evaluate the Location Stack through 
use in real research and commercial 
applications.

• Collaboration with machine learning 
community to work on contextual fusion 
and activity inference.


