

The Normalization Shortcut

$P(B \mid j, m)$ stands for the probability distribution of B given that $J=j$ and $M=m$
By definition $P(B \mid j, m)=P(B, j, m) / P(j, m)$, so
letting $\alpha=(1 / P(j, m))$ lets us write: $P(B \mid j, m)=\alpha P(B, j, m)$
Why? Because we don't have to calculate $P(j, m)$ explicitly! $\langle P(b \mid j, m), P(\neg b \mid j, m)\rangle=\langle\alpha P(b, j, m), \alpha P(\neg b, j, m)\rangle$
By the laws of probability $P(b \mid j, m)+P(\neg b \mid j, m)=1$, so $\alpha P(b, j, m)+\alpha P(\neg b, j, m)=1$ $\alpha=1 /(P(b, j, m)+P(\neg b, j, m))$
In general: α means "make distribution sum to 1 "

Inference by enumeration
Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:
$\mathbf{P}(B \mid j, m)$
$=\mathbf{P}(B, j, m) / P(j, m)$
$=\alpha \mathbf{P}(B, j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$
$=\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$=\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time


```
            Sampling from an empty network contd.
Probability that PriorSample generates a particular event
    SPS}(\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{})=\mp@subsup{\prod}{i=1}{n}P(\mp@subsup{x}{i}{}|P\operatorname{Parents}(\mp@subsup{X}{i}{}))=P(\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{}
i.e., the true prior probability
E.g., }\mp@subsup{S}{PS}{}(t,f,t,t)=0.5\times0.9\times0.8\times0.9=0.324=P(t,f,t,t
Let }\mp@subsup{N}{PS}{}(\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{})\mathrm{ be the number of samples generated for event }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{
Then we have
\[
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
\]
```

That is, estimates derived from PriorSample are consistent
Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with \mathbf{e}
function Rejection-Sampling $(X$, e $, b n, M)$ returns an estimate of $P(X \mid \mathbf{e})$ local variables: \mathbf{N}, a vector of counts over X, initially zero
for $j=1$ to N do
$\mathbf{x} \leftarrow \operatorname{Prior}-\operatorname{SAMPLE}(b n)$
x is consistent with e then
$\mathrm{N}[x] \leftarrow \mathrm{N}[x]+1$ where x is the value of X in x
return Normalize($\mathrm{N}[X]$)
E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples

27 samples have Sprinkler $=$ true
Of these, 8 have Rain = true and 19 have Rain = false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NORMALIze}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

MCMC with Gibbs Sampling

Fix the values of observed variables

Set the values of all non-observed variables randomly
Perform a random walk through the space of complete variable assignments. On each move:

1. Pick a variable X
2. Calculate $\operatorname{Pr}(\mathrm{X}=$ true | all other variables)
3. Set X to true with that probability

Repeat many times. Frequency with which any variable X is true is it's posterior probability.
Converges to true posterior when frequencies stop changing significantly

- stable distribution, mixing

Markov Blanket Sampling
How to calculate $\operatorname{Pr}(\mathrm{X}=$ true \| all other variables) ?
Recall: a variable is independent of all others given it's Markov Blanket
parents
- children
- other parents of children
So problem becomes calculating $\operatorname{Pr}(\mathrm{X}=\mathrm{true} \mid \mathrm{MB}(\mathrm{X}))$ - We solve this sub-problem exactly - Fortunately, it is easy to solve

Example
$P(X)=\alpha P(X \mid \operatorname{Parents}(X)) \prod_{Y \in \operatorname{Chidrren}(X)} P(Y \mid \operatorname{Parents}(Y))$ $\begin{aligned} & P(X \mid A, B, C)=\frac{P(X, A, B, C)}{P(A, B, C)} \\ & =\frac{P(A) P(X \mid A) P(C) P(B \mid X, C)}{P(A, B, C)} \\ & =\left[\frac{P(A) P(C)}{P(A, B, C)}\right] P(X \mid A) P(B \mid X, C) \\ & =\alpha P(X \mid A) P(B \mid X, C) \end{aligned}$

The Location Stack

5 Principles

1. There are fundamental measurement techniques.
2. There are standard ways to combine measurements.
3. There are standard object relationship queries.
4. Applications are concerned with activities.
5. Uncertainty is important.

Activities	
Intentions	
Contextual Fusion	
Non- Location Context	Arrangements
Abstractions	Measurements

[Hightower, Brumitt, and Borriello, WMCSA, Jan 2002]

Principle 4: Applications are concerned with activities.

- Dinner is in progress.
- A presentation is going on in Mueller 153.
- Jeff is walking through his house listening to The Beatles.
- Jane is dispensing ethylene-glycol into beaker \#45039.
- Elvis has left the building.

MCL details

Motion models: $p\left(x_{t} \mid x_{t-1}\right)$:

Stochastically shift all particles

Sensor likelihood models: $p\left(m_{t} \mid x_{t}\right)$

Adaptive MCL

- Performance improvement: adjust sample count to best represent the posterior.

1. Assume we know the true $\operatorname{Bel}(x)$ represented as a multinomial distribution.
2. Determine number of samples such that with probability ($1-p$), the Kullback-Leibler distance between the true posterior and the particle filter representation is less than ε [Fox, NIPS, 2002]

2D MCL Example: Robocup

- 1 Object
- 2 types of Measurements
Vision marker distance Odometry
- Red dot is most likely state.

(x,y,orientation)
[Fox et al., Sequential Monte Carlo Methods in Practice, 2000]

Location Stack Implementation

Location Stack Supported Technologies

1. VersusTech commercial infrared badge proximity system
2. RF Proximity using the Berkeley motes
3. SICK LMS-200 180° infrared laser range finders
4. MIT Cricket ultrasound range beacons
5. Indoor harmonic radar, in progress
6. 802.11 b WiFi triangulation system, in progress
7. Cellular telephone E-OTD, planned

Person Tracking with Anonymous and Id-Sensors: Motivation

- Accurate anonymous sensors exist
- Id-sensors are less accurate but provide explicit object identity information.

Person Tracking with Anonymous and Id-Sensors: Concept

- Use Rao-Blackwellised particle filters to efficiently estimate locations

1. Each particle is an association history between Kalman filter object tracks and observations.
2. Due to initial id uncertainty, starts by tracking using only anonymous sensors and estimating object id's with sufficient statistics.
3. Once id estimates are certain enough, sample id them using a fully Rao-Blackwellised particle filter over both object tracks and id assignments.

Conclusion

Relying on a single location technology to support all UbiComp applications is inappropriate. Instead, the Location Stack provides:

1. The ability to fuse measurements from many technologies including both anonymous and id-sensors while preserving sensor uncertainty models.
2. Design abstractions enabling system evolution as new sensor technologies are created.
3. A common vocabulary to partition the work and research problems appropriately.

Example Applications

- Spelling and grammar checkers
- Finding information on the WWW
- Spoken language control systems: banking, shopping
- Classification systems for messages, articles
- Machine translation tools

What is Information Retrieval

- Given a large repository of documents, how do I get at the ones that I want
- Examples: Lexus/Nexus, Medical reports, AltaVista
- Different from databases
- Unstructured (or semi-structured) data
- Information is (typically) text
- Requests are (typically) word-based

Information Retrieval Task

- Start with a set of documents
- User specifies information need
- Keyword query, Boolean expression, highlevel description
- System returns a list of documents
- Ordered according to relevance

Known as the ad-hoc retrieval problem

Measuring Performance

- Precision $\frac{t p}{t p+f p}$
- Proportion of selected items that are correct

Recall $\frac{t p}{t p+f n}$

- Proportion of target items that were selected
Precision-Recall curve
- Shows tradeoff

System returned these Actual relevant docs

Basic IR System

- Use word overlap to determine relevance - Word overlap alone is inaccurate

Rank documents by similarity to query

Vector Space Model

- Represent documents as a matrix
- Words are rows
- Documents are columns
- Cell i, j contains the number of times word i appears in document j
- Similarity between two documents is the cosine of the angle between the vectors representing those words

Common Improvements

Handling Common Terms

- The vector space model
- Doesn't handle morphology (eat, eats, eating)
- Favors common terms
- Stop list
- List of words to ignore
- "a", "and", "but", "to", etc.
- Possible fixes
- Stemming
- Convert each word to a common root form
- Term weighting
- Words which appear everywhere aren't very good discriminators - give higher weight to rare words
- Stop lists
- Term weighting

Probabilistic IR

- Vector space model robust in practice
- Mathematically ad-hoc
- How to generalize to more complex queries? (intel or microsoft) and (not stock)
- Alternative approach: model problem as finding documents with highest probability of being relevant to the query
- Requires making some simplifying assumptions about underlying probability distributions
- In certain cases can be shown to yield same results as vector space model

Probability Ranking Principle

- For a given query Q , find the documents D that maximize the odds that the document is relevant (R):

$$
\frac{P(r \mid D, Q)}{P(\neg r \mid D, Q)}=P(Q \mid D, r) \times \frac{P(r \mid D)}{P(\neg r \mid D)}
$$

Probability Ranking Principle

- For a given query Q , find the documents D that maximize the odds that the document is relevant (R):

Probability that if document is indeed relevant, then the query is in fact Q

But where do we get that number? $\quad 78$

Probability of document relevance to any query i.e., the inherent quality of the document

Conditional Probability Tables

- $P(d)=$ prior probability document d is relevant
- Uniform model: $P(d)=1 /$ Number docs
- In general, document quality $P(r \mid d)$
- $P(w \mid d)=$ probability that a random word from document d is w
- Term frequency
- $P(c \mid w)=$ probability that a given document word w has same meaning as a query word c
- Thesarus
- $P\left(q \mid c_{1}, c_{2}, \ldots\right)=$ canonical form of operators AND, OR, NOT, etc. 82

Details

- Set head q_{0} of user query to "true"
- Compute posterior probability $P\left(D \mid q_{0}\right)$
- "User information need" doesn't have to be a query - can be a user profile, e.g., other documents user has read
- Instead of just words, can include phrases, inter-document links
- Link matrices can be modified over time.
- User feedback
- The promise of "personalization"

Improved Ranking on the Web

- Not just arbitrary documents
- Can use HTML tags and other properties
- Query term in <TITLE></TITLE>
- Query term in , <HREF>, etc. tag
- Check date of document (prefer recent docs)
- PageRank (Google)

PageRank

- Idea: Good pages link to other good pages - Round 1: count in-links Problems?
- Round 2: sum weighted in-links - Round 3: and again, and again..
- Implementation: Repeated random walk on snapshot of the web
- weight \approx frequency visited

Relevance Feedback

- System returns initial set of documents
- Given query, add words to improve recall - Workaround for synonym problem
- Example
- boat \rightarrow boat OR ship
- Can involve user feedback or not
- Can use thesaurus or other online source
- WordNet

Variations on a Theme

- Text Categorization
- Assign each document to a category
- Example: automatically put web pages in

Yahoo hierarchy

- Routing \& Filtering
- Match documents with users
- Example: news service that allows subscribers to specify "send news about high-tech mergers"

