CSE 473 Artificial Intelligence

I Outline

{ Exact inference by enumeration
{ Exact inference by variable elimination
{ Approximate inference by stochastic simulation

{ Approximate inference by Markov chain Monte Carlo

AMAD Chapter 145 2 ]
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[ Inference tasks |

Simple queries: compute posterior marginal P(X,|E=e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=e) = P(X;|E=e)P(X;|X;,E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

P(B| j,m) stands for the probability distribution of B
giventhatJ=jand M =m

By definition P(B| j,m)=P(B, j,m)/P(j,m), so

letting a = (1/ P(j,m)) lets us write:
P(B|j,m)=aP(B, j,m)

aP(b, j,m)+aP(=b, j,m) =1
a=1/(P(b, j,m)+P(=b, j,m))
In general: o means "make distribution sum to 1"

The Normalization Shortcut

Why? Because we don't have to calculate P(j,m) explicitly!
(P(b] j,m),P(=b] j,m)) = (eP(b, j,m),aP(=b, j,m))
By the laws of probability P(b| j,m)+ P(=b| j,m) =1, so

[ Inference by enumeration |

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:
P(B|j,m) @
=P(B,j,m)/P(j,m) 0!
=aP(B,j,m)
=aX.X,P(B,e,a,j,m)

O O

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

= aX.2,P(B)P(e)P(a|B,e)P(jla)P(m|a)

= aP(B)X.P(e)X,P(a|B,e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time

ABAZE Chapter 14454
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[ Inference by variable elimination |
Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
P(B|j,m)
=aP(B)X ) 3, P(a|B,e) P(jla) m\a)
A 7
faP(B)E P(e)Z.P(a[B,e)P(jla) fu(@)
= aP(B)X.P(e)LaP(a|B,€)fs(a)fu(a)
= (!P(B)Z P(e)Sufa(a,b,€)fs(a) fr(a)
=aP(B)L.P(e )f“‘,bc (sum out A)
= aP(B)fp(b) (sum out £)
= f!fs(b) X furu b)
T

I Inference by stochastic simulation i

Basic idea:
1) Draw N samples from a sampling distribution S

2) Compute an approximate posterior probability P

3) Show this converges to the true probability P
Outline: @

— Sampling from an empty network
- Rejection sam pllng reject samples disagreeing with evidence
— Likelihood id to weight samples

g: use
- Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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I Example i
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[ Sampling from an empty network contd. |

Probability that PRIORSAMPLE generates a particular event
Sps(x1...xa) = II]_ P(zi| Parents(X;)) = P(x1 ... x5)
i.e., the true prior probability

E.g. Sps(t, fit,t) = 0.5x 0.9 x 0.8 x 0.9 = 0.324 = P(t, f, t,1)
Let Npg(zy...x,) be the number of samples generated for event z1, ..., z,

Then we have

Jm P(a, . = Jim Nes(ar,...,2.)/N
= Sps(a,.

= P(z;.. .xﬁ’

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(x

~P(z)...z,)

AR Chapr 1445 2 14

[ Rejection sampling ]

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero
for j=1to N do
X + PRIOR-SAMPLE(bn)
if x is consistent with e then
N[a] + Na]+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain = true and 19 have Rain= false.

P(Rain|Sprinkler = true) = NORMALIZE((8, 19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure

AMA Chapta 1445 B 15

[ Analysis of rejection sampling |

Nps(X,e)/Npg(e) (normalized by Npg(e))
P(X,e)/P(e) (property of PRIORSAMPLE)
P(X|e) (defn. of conditional probability)

P(X|e) = aNps(X, e) (algorithm defn.)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!

AMA Chapta 1445 2 1

Markov Chain Monte Carlo

CSE 592 17

MCMC with Gibbs Sampling

Fix the values of observed variables
Set the values of all non-observed variables randomly

Perform a random walk through the space of complete
variable assignments. On each move:

1. Pick a variable X
2. Calculate Pr(X=true | all other variables)
3. Set X to true with that probability

Repeat many times. Frequency with which any variable Xis
true is it's posterior probability.

Converges to true posterior when frequencies stop changing
significantly
. stable distribution, mixing

CSE 592 18
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Markov Blanket Sampling
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How to calculate Pr(X=true | all other variables) ?

Recall: a variable is independent of all others given it's
Markov Blanket

* parents
« children
« other parents of children
So problem becomes calculating Pr(X=true | MB(X))
« We solve this sub-problem exactly
« Fortunately, it is easy to solve

Example

P(X) =aP(X|Parents(X)) []

P(Y | Parents(Y))

YeChildren(X)

(») _P(X,AB,C)
PEIABO=omB0)
_ P(AP(X | AP(C)P(B| X,C)

® © - P(AB,C)

_[PyP©)

e _{P(AB’CJP(XM)P(BM,C)
=aP(X | AP(B| X,C)
Example 2

P()

P(X)=aP(X |Parents(X)) [] P(Y|Parents(Y))
YeChildren(X)
CSE 592 19
Example
P(s)
s Te0
T 0.8
S P(s) 0.1
T 0.6
F 0.1
Evidence:
EHESS S=true, B=true
H L P(b) of breath
T T 0.9
T F 0.8
F T 07
F F 0.1
CSE 592 21
Example 3
P(s)
s TP0
T 0.8
s |P() 0.1
T 0.6
F 0.1
Sample H:
—— P(h|s.Ib)=aP(h|s)P(b]h.l)
H L P(b) of breath =0(0.6)(0.9)= 0.0.54
T T 0.9 P(=hls,l,b)=0P(=h|s)P(b] —h,I)
T F 038 = 0(0.4)(0.7)= 0. 0.28
F T 0.7 Normalize: 0.54/(0.54+0.28)=0.66
F F 0.1 Flip coin: H becomes true (maybe)
CSE 592 23

0.8
S P(h) 0.1
T 0.6
F 0.1
Evidence:
e S=true, B=true
H L P(b) of breath Randomly set H=false, L=true
T T 0.9
T F 0.8
F T 0.7
F F 0.1
CSE 592 2
Example 4
PO
0.8
s |P() 0.1
T 0.6
F 0.1
Sample L:
— P(lls,h,b)=aP(l|s)P(blh,l)
H L P(b) of breath =0(0.8)(0.9)= .0.72
T T 0.9 P(=l|s,h,b)=0P(—l|s)P(b] h, = 1)
T F 0.8 = 0(0.2)(0.8)= 0. 0.16
F T 0.7 Normalize: 0.72/(0.72+0.16)=0.82
F F 0.1 Flip cain: ...
CSE 592 2
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Example 5: Different Evidence
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o2 |

Example 6

o2 |

s |P() F_|o1
T 0.6
heart
F 01 disease
Evidence:
shortness S=true, B=false
H L P(b) of breath Randomly set H=false, L=true
T T 0.9
T F 0.8
F T 0.7
F F 0.1
CSE 592 2%
Example 8
P()
0.8
S P(h) 01
T 0.6
F 0.1
Sample L:
shortness P(l|s,—h,—b)=0P(I|s)P(—b|-h,I)
H L P(b) of breath =0(0.8)(0.3)= . 0.24
T T 0.9 P(—l|s,—h,—b)=cP(=l|s)P(=b|-h,— I)
T F 0.8 =(0.2)(0.9)= 0.0.18
F T 0.7 Normalize: 0.24/(0.24+0.18)=0.75
F F 0.1 Flip coin: ...
CSE 592 28

S P(l)
ED) F_|o1
T 06 heart
lun
£ =
Evidence:
shortness S=true, B=false
H L P(b) of breath
T T 0.9
T F 038
F T 0.7
F F 0.1
CSE 592 2
Example 7
P()
0.8
S P(h) 0.1
T 0.6
F 0.1
Sample H:
shortness P(hls,l,—b)=0P(h|s)P(=blh,l)
H L P(b) of breath = (0.6)(0.1)= 0. 0.06
T T 0.9 P(=hls,l,~b)=oP(=h[s)P(=b] =h,l)
T F 0.8 = (0.4)(0.3)= 0. 0.12
F T 0.7 Normalize: 0.06/(0.06+0.12)=0.33
F F 0.1 Flip coin: H stays false (maybe)
CSE 592 27
| Summary |

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC: ‘ (and rejection sampling)
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables

AMAZ Chapier 1445 35 g

I Outline ]

¢ Time and uncertainty
{ Inference: filtering, prediction, smoothing

< Hidden Markov models

¢{ Dynamic Bayesian networks

{ Particle filtering

Chaerts 2 gg
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[ Time and uncertainty |

The world changes; we need to track and predict it

Diabetes vs vehicle di

Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar,, StomachContents,, etc.

E; = set of observable evidence variables at time
e.g., MeasuredBloodSugar,, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X, = X, Xoup, -+, X1, Xp

Cherts 3 g7

2003-1-30

[ Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X;;_;

First-order Markov process: P(X;|Xg,—1) = P(X;|X;-1)
Second-order Markov process: P (X;|Xg—1) = P(Xy| X2, X;-1)

prrer - — D~ ED~CD—~ED—~ED)
e D= DD D

Sensor Markov assumption: P(E|Xq., Egi—1) = P(E/|X,)

Stationary process: transition model P(X;|X;_;) and
sensor model P (E/|X;) fixed for all ¢

Chapter 15 4

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

Chmeris 5 g3

I Inference tasks

Filtering: P(X|ey.)
belief state—input to the decision process of a rational agent
Prediction: P (X, t|e;.) for k >0
evaluation of possible action sequences;
like filtering without the evidence
Smoothing: P(Xy|ey,) for 0 <k <t
better estimate of past states, essential for learning
Most likely explanation: arg maxy, , P(xXi.[er..)
speech recognition, decoding with a noisy channel

34

| DBNs vs. HMMs )

Every HMM is a single-variable DBN; every discrete DBN is an HMM

wae
O—© 1=

Sparse dependencies = ially fewer p s;
e.g., 20 state variables, three parents each
DBN has 20 x 2° = 160 parameters, HMM has 2% x 2% ~ 10

99

Chrts % gg

I Exact inference in DBNs ]

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢
Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"*!), update cost O(d"*?)
(cf. HMM update cost O(d*"))

Chptr 15 35
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[ Particle filtering |

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain,  Rain,, Rain, Rain
rue | 0000 000 .

o o oo ooce
Jalse | J - oo osse

(a) Propagate (b) Weight () Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chpas 3 g7

[ Particle filtering contd. |

Assume consistent at time t: N (x;|e1.) /N = P(x;|eq.)
Propagate forward: populations of x;., are
N(xe1lers) = Y, P(x111] %) N (xr]e14)
Weight samples by their likelihood for e;.:
W(xeialenir) = Plewsi[xi1) N(xeialer)
Resample to obtain populations proportional to W:

N(xer1lerer1)/N = aW(Xepileri) = aP(ep[Xe ) N (Xes1ler)
= aP (e |xe1) Ex P (o1 ) N (x| er)
= o' P(er1[xe41) Ex, P(Xep1[%0) P(xc]err)
= P(xi1]ens)

Chals 3% g

The Location Stack:
Design and Sensor-Fusion for
Location-Aware Ubicomp

Jeffrey Hightower

39

A survey & taxonomy of location
technologies

©

Ad hoc signal strength Physical contact DC magnelic puises Cellular E-911

o

Infrared proximity Ultrasonic time of flight Laser range-finding Stereo vision

[Hightower and Borriello, IEEE Computer, Adg 2001]

The Location Stack

5 Principles " Intentions
1. Therearefundamental
measurement techniques.
2. There are standard ways
to combine measurements.

1 Activities
|
|

Contextual Fusion

3. Thereare standard object Moy L Ayl
relationship queries. 'é’;ri‘ég? I sk

4. Applicationsare
concerned with activities.

5. Uncertainty isimportant. S . Sensors

a1
2 [Hightower, Brumitt, and Borriello, WMCSA, Jan 2002]

Principle 4: Applications are
concerned with activities.
 Dinnerisin progress.
* A presentation is going on in Mueller 153.
« Jeff iswalking through his house listening
to The Beatles.
« Janeis dispensing ethylene-glycol into
beaker #45039.
* Elvis hasleft the building.
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Principle 5: Uncertainty is
important.
Example: routing phone calls to nearest handset

2003-1-30

Fusion using Monte Carlo localization
(MCL)

p(m|x)
Bel(x) ﬁ : — Bel(X)

Bel(x) = p(x | m..my)
Bel () =7p(m )| P(x, |%)Bel (x,)dx

p(m|x)
Bel(x) — Bel(X) : ;

X o=
Gafiz
8 [Hightower and Borriello, Ubicomp LMUC Workshop, SAesp 2001]
MCL details
Motion models: P(x [%.4) .
: e
Stochastically shift ... . & o, fiia-
all particles T TS

Sensor likelihood models; p(m | %)

:_@ P ;Z NN

distance

“
2D MCL Example: Robocup
1 Object
+ 2typesof I
Measurements B R
Vision marker distance G 4. s et
Odometry R
+ Reddotismost likely — ==[7 =« .0 7 L
state. e o o
(x,y,orientation)
% [Fox et al., Sequential Monte Carlo Methodsin Pracliég, 2000]

Adaptive MCL

» Performance improvement: adjust sample
count to best represent the posterior.

1. Assumewe know thetrue Bel(X) represented
asamultinomial distribution.

2. Determine number of samples such that with
probability (1-p), the Kullback-Lebler
distance between the true posterior and the
particlefilter representation islessthan €

47
@ [Fox, NIPS, 2002]

Location Stack |mplementation

World Map
Service — MCL-based

Fusion
Engine(s)

S i

Database

[Sensor Driver} [Sensor Driver| |Sensor Driver
i T
Sensor Sensor
Hardware Hardware

Sensor
Hardware
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Location Stack Supported
Technologies

1. VersusTech commercial infrared badge
proximity system

RF Proximity using the Berkeley motes

SICK LMS-200 180° infrared laser range finders
MIT Cricket ultrasound range beacons

Indoor harmonic radar, in progress

802.11b WiFi triangulation system, in progress
Cellular telephone E-OTD, planned

N o gD

49

The Location Stack in action

Person Tracking with Anonymous
and ld-Sensors: Motivation

 Accurate anonymous Sensors exist

* |d-sensors are less accurate but provide
explicit object identity information.

AD A 40 Y

Person Tracking with Anonymous
and Id-Sensors. Concept

Use Rao-Blackwellised particlefiltersto
efficiently estimate locations

1. Each particle is an association history between
Kalman filter object tracks and observations.

2. Duetoinitial id uncertainty, starts by tracking using
only anonymous sensors and estimating object id's
with sufficient statistics.

3. Once id estimates are certain enough, sample id them
using a fully Rao-Blackwellised particle filter over
both object tracks and id assignments.

52
[Fox, Hightower, and Schulz., Submitted to 1JCAI, 2003]

Experimental Setup

" 4p_[H—£faS()und Receiver | ]
:|eInfrared Receiver
_iaLaser Range-Finder

Gt

Experimental Setup
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Person Tracking with Anonymous
and ld-Sensors: Result

¢ Our 2 phase Rao-Blackwellised particlefilter
algorithm is quite effective.

2003-1-30

Conclusion
Relying on a single location technology to support

all UbiComp applicationsisinappropriate. Instead,

the Location Stack provides:

1. The ability to fuse measurements from many technologies

including both anonymous and id-sensors while preserving
sensor uncertainty models.

Design abstractions enabling system evolution as new sensor
technologies are created.

A common vocabulary to partition the work and research
problems appropriately.

GO CER RN AR

NERRRERRAANNRREARRRAAAARR AR

Natural Language Processing

CSE 592 Applications of Al
Winter 2003

Information Retrieval
Speech Recognition
Syntactic Parsing
Semantic Interpretation

57

GOPEYEEE R AR AR AR

NEEEENRRANNNEENNREARARR RN

Example Applications

¢ Spelling and grammar checkers

¢ Finding information on the WWW

¢ Spoken language control systems: banking,
shopping

¢ Classification systems for messages,
articles

e Machine trandlation tools

GOV ECEE AR AR

||||I’l'\l|ffr

The Dream

AARAAA AR AN EAREEREERRNEALRSR

59

EOVECERRA LA AR

EARARRARAANEERERRRAAAAANAR

Information Retrieva

(Thanks to Adam Carlson)

10
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Motivation and Outline

- Background  ~CamlFe>

o
— Definitions Eramo +heart sdisease swomen
. The Problem WEBPAGES 101,796 pages found

2003-1-30

I NCAC Lets

— 100,000+ pages
s. The Solution
— Ranking docs

C Letter h
NCAC Latiarto Vice Prasident Al Gara AboutInfamet Censorship. Juns 15, 198, Vice:

— Vector space
— Probabilistic

approaches
«. Extensions
— Relevance feedback, clustering, query expansion, etc.

What is Information Retrieva

» Given alarge repository of documents,
how do | get at the onesthat | want

— Examples: Lexus/Nexus, Medical reports,
AltaVista

« Different from databases
— Unstructured (or semi-structured) data
— Information is (typically) text
— Requests are (typically) word-based

62

Information Retrieval Task

Start with a set of documents
User specifiesinformation need

— Keyword query, Boolean expression, high-
level description

» System returns alist of documents
— Ordered according to relevance

» Known as the ad-hoc retrieval problem

Measuring Performance

tp tn
¢ Precision *
— Proportion of selected
items that are correct
tp
e Recadl @ System returned these
— Proportion of target Actual relevant docs

items that were selected ~ Recall
¢ Precision-Recall curve
— Shows tradeoff

N

Precision

Basic IR System

— Word overlap aloneisinaccurate

» Rank documents by similarity to query

» Computed using Vector Space Model

» Use word overlap to determine relevance

Vector Space Model

» Represent documents as a matrix
— Words arerows
— Documents are columns

— Cell i,j contains the number of timesword i
appearsin document

— Similarity between two documentsisthe
cosine of the angle between the vectors
representing those words

66

11
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Vector Space Example

2003-1-30

S s - — albc|dle|f |g|h]|l
a System and human system engineering
testing of EPS Interface | 0] 0] 1| 0] 0| 0] 0] 0] O
b: A survey of user opinion of computer system User 011110100 00
responsetime System 2/ 1/ 1/ 0/ 0/ 0]0/0OO0
c: The EPS user interface management system Human 1/ 0/ 0/ 1/ 0[ 0] 0] O] O
d: Human machine interface for ABC computer  (Computer | 0| 1| 0| 1| 0| 0| 0| 0] O
R:p:!'ca('jms e dmet Response | 0] 1] o o] 1] o[ o[ o] 0
[ ion of user perceived responsetime to 3
e e i Time 0/ 1/ 0] 0] 10/ 0/ 00
f: The generation of random, binary, ordered EPS 1,0/ 1) 0 0] 0] 0] 0] O
trees Survey 0/ 1/ 0/ 0/ 0/0jOjO]1
g: Theintersection graph of pathsin trees Trees 0/ 0j0/OOl1 110
h: Graphvminur_s 1V: Widths of trees and well- Graph 0| ol ol o] of O] 1] 1| 1
Gkl Minors | o[ o[ o] o] o] o] of 1] 1

i Graph minors: A survey

Vector Space Example cont.

interface

a
Interface | 0
User 0
System |2

NNEE
[

AB
[AlB]

COS(0,5) =

68

Similarity in Vector Space

A‘B=AB+AB,+.+AB,
Measures word overlap . 6"‘6)

&
cox%h% s°

Normalizes for different length vectors

\\. n
AR (A

Answering a Query Using

Vector Space
° Ra)re%-]tquayas Queryla |b |c |d [e [f [g [h ]I
vector Interface ol o[ of 1[ o[ o o o] o[ 0
. User o[ o[ 1] 1[ o[ 1] o[ o o[ 0
. Computed|$ancesto System 1 2[ 1] 1] o[ o[ o[ o[ o[ 0
Human 0] 1) 0] 0] 1| O] O] O] O] O
all documents Computer 1] o[ 2/ o 1[ o[ o[ o] o[ 0
. Response o[ o 1] o[ o[ 1] o[ o] o[ 0
* Rank accordingto e ol o[ 1[0/ o 1/ o[ 0| o] 0
i EPS o[ 1] o[ 2] o[ o[ o[ o] o[ 0
distance Survey o[ o 1] o[ o[ o] o[ o] o[ 1
Trees 0/ 0,000 01 1[10
* Example Graph o[ o o[ o[ o[ of o 1] 1[ 1]
= “Computer system” Minors 0] o of o] o] of 0] O] 1] 1]

70

Common Improvements

» The vector space model
— Doesn't handle morphology (eat, eats, eating)
— Favors common terms
* Possible fixes
— Stemming
« Convert each word to a common root form
— Stop lists
— Term weighting

Handling Common Terms

o Stop list
— List of wordsto ignore
@, “and”, “but”, “to”, etc.
o Term weighting
— Words which appear everywhere aren’t very

good discriminators — give higher weight to
rarewords

72

12
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tf * idf
w, =tfy *log(N/n,)

T, =termk in document D,

tf,. =frequency of termT, in document D,

idf, =inversedocument frequency of term T, inC
N = total number of documentsin the collection C
n, = the number of documentsin C that contain T,

idf, = Iog(#j

2003-1-30

Inverse Document Frequency

* |DF provides high values for rare words
and low values for common words

(10000]
logg —— |=0
10000

For a

collection |og(@] -0.301
of 10000 5000
d nt
locuments log(loooo] ~2698
20
|og(1°°°°] 4
1 74

Probabilistic IR

* Vector space model robust in practice
» Mathematically ad-hoc
— How to generalize to more complex queries?

(intel or microsoft) and (not stock)

« Alternative approach: model problem asfinding
documents with highest probability of being
relevant to the query
— Requires making some simplifying assumptions about

underlying probability distributions
— In certain cases can be shown to yield same results as
vector space model

5

Probability Ranking Principle

= For a given query Q, find the documents D that
maximize the odds that the document is relevant (R):

P ID.Q) _ P( D)
P 1D, P D)

Probability Ranking Principle

= For a given query Q, find the documents D that
maximize the odds that the document is relevant (R):

P(r|D,Q) _ P(r |D)
PrDg L RIPIXE D)

o

Probability of document relevance to any query —
i.e,, theinherent quality of the document

Probability Ranking Principle

= For a given query Q, find the documents D that
maximize the odds that the document is relevant (R):

_P(r1D,Q _ _P(r1D)
P(—r|D,Q) | HeE P(=r | D)

X

Probability that if document isindeed relevant,
then the query isin fact Q

But where do we get that number? =

13
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Bayesian nets for text retrieval

Documents
Document
Networ k

@ e @ Concepts Query

Networ k
@ @ Query operators
(AND/OR/NOT)
Information need 7

2003-1-30
Bayesian nets for text retrieval
Computed Documents
once for Document
entire Networ k
collection @ Words
@ e @ Concepts Query
Networ k
@ @ Query operators
(AND/OR/NOT)
@ Information need 80

Bayesian nets for text retrieval

Documents
Document
Networ k

Computed @ @ e Concepts O

Conditional Probability Tables
— |
» P(d) = prior probability document d is relevant

= Uniform model: P(d) =1 / Number docs
= In general, document quality P(r| d)

= P(w| d) = probability that a random word from
document dis w

= Term frequency

= P(c | w) = probability that a given document word
w has same meaning as a query word ¢

for each
Networ k
qy @ @ Query operators
(AND/OR/NOT)
@ Information need 81
Example
Document
Networ k
Query
Networ k

83

= Thesarus
= P(qlc,, ¢, ...)=canonical form of operators
AND, OR, NOT, etc. 82
Details

= Set head g, of user query to “true”
= Compute posterior probability P(D | g,)
= “User information need” doesn’t have to be a

query - can be a user profile, e.g., other
documents user has read

= Instead of just words, can include phrases,
inter-document links

= Link matrices can be modified over time.
= User feedback
= The promise of “personalization”

14



CSE 473 Artificial Intelligence

Extensions

» Meet demands of web-based systems

» Modified ranking functions for the web
* Relevance feedback

* Query expansion

» Document clustering

 Latent Semantic Indexing

Other IR tasks

IR on the Web

* Query AltaVistawith “Java’
— Almost 107 pages found
* Avoiding latency
— User wants (initia) results fast
* Solution
— Rank documents using word-overlap
— Use special data structure - inverted index

86

Improved Ranking on the Web

 Not just arbitrary documents

e Can use HTML tags and other properties
— Query term in <TITLE></TITLE>
— Query term in <IMG>, <HREF>, etc. tag
— Check date of document (prefer recent docs)
— PageRank (Google)

PageRank

* ldea: Good pages link to other good pages
—Round 1: count in-links ~ Problems?

— Round 2: sum weighted in-links

— Round 3: and again, and again...
Implementation: Repeated random walk on
snapshot of the web

— weight = frequency /\

visited N

\ O
O

Relevance Feedback

o System returnsinitial set of documents
* User identifies relevant documents
* System refines query to get documents
more like those identified by user
— Add words common to relevant docs
— Reposition query vector closer to relevant docs
* Lather, rinse, repest...

Query Expansion

 Given query, add words to improve recall
— Workaround for synonym problem

* Example
— boat — boat OR ship

* Caninvolve user feedback or not

» Can use thesaurus or other online source
— WordNet

90

2003-1-30
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Document Clustering

Group similar documents

— Similar means “ close in vector space”

If adocument is relevant, return whole
cluster

Can be combined with relevance feedback
GROUPER

http://www.cs.washington.edu/research/clustering

2003-1-30

Clustering Algorithms

* K-means

Loop usters
'

Initialize k cluster centers
Assign all document to closest center
Move cluster centers to better fit assignment | Cluster centers,
Until little movement

Hierarchical Agglomerative Clustering

Latent Semantic Indexing

Creates modified vector space
Captures transitive co-occurrence
information

—If docs A & B don’t share any words, with
each other, but both share |ots of words with
doc C, then A & B will be considered similar

Simulates query expansion and document
clustering (sort of)

Initialize each document to asingleton cluster «&%;6’9
Loop '6*6\065\&
Merge two closest clusters 6“\“@“
Until k clusters exist w{:&&
92
Variations on a Theme
 Text Categorization

— Assign each document to a category

— Example: automatically put web pagesin
Y ahoo hierarchy

Routing & Filtering

— Match documents with users

— Example: news service that allows subscribers
to specify “ send news about high-tech
mergers’

16



