Outline

- $\diamondsuit~$ Exact inference by enumeration
- $\diamondsuit~$ Exact inference by variable elimination
- Approximate inference by stochastic simulation
 Approximate inference by Markov chain Monte Carlo

Simple queries: compute posterior marginal P(X_i|E=e) e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false) Conjunctive queries: P(X_i, X_j|E=e) = P(X_i|E=e)P(X_j|X_i, E=e) Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence) Value of information: which evidence to seek next? Sensitivity analysis: which probability values are most critical? Explanation: why do I need a new starter motor?

Inference tasks

The Normalization Shortcut

AlMA2e Chapter 14.4-5 2 1

$$\begin{split} P(B \mid j,m) \text{ stands for the probability distribution of B} \\ \text{given that } J = j \text{ and } M = m \\ \text{By definition } P(B \mid j,m) = P(B, j,m) / P(j,m), \text{ so} \\ \text{letting } \alpha = (1/P(j,m)) \text{ lets us write:} \\ P(B \mid j,m) = \alpha P(B, j,m) \\ \text{Why? Because we don't have to calculate } P(j,m) \text{ explicitly!} \\ \left< P(b \mid j,m), P(\neg b \mid j,m) \right> = \left< \alpha P(b, j,m), \alpha P(\neg b, j,m) \right> \\ \text{By the laws of probability } P(b \mid j,m) + P(\neg b \mid j,m) = 1, \text{ so} \\ \alpha P(b, j,m) + \alpha P(\neg b, j,m) = 1 \\ \alpha = 1/(P(b, j,m) + P(\neg b, j,m)) \\ \text{In general: } \alpha \text{ means "make distribution sum to 1"} \end{split}$$

Basic idea: ensu tracks the high-	ire that the p likelihood regi	opulation o ions of the	of samples state-spac	("particles") œ	
Replicate partic	es proportion	al to likelih	nood for \mathbf{e}_t		
	Rain _t Ra	ain_{t+1}	$Rain_{t+1}$	$Rain_{t+1}$	
true		•••		0	
false	: 4:	0	00 00	0000	
	(a) Propagat	e	(b) Weight	(c) Resample	
Widely used for	tracking nonl	inear syste	ms, esp. ir	n vision	
Also used for sin 10 ⁵ -dimensio	nultaneous lo onal state spac	calization a	and mappi	ng in mobile rob	ots

Principle 4: Applications are concerned with activities.

- Dinner is in progress.
- A presentation is going on in Mueller 153.
- Jeff is walking through his house listening to The Beatles.
- Jane is dispensing ethylene-glycol into beaker #45039.
- Elvis has left the building.

42

Location Stack Supported Technologies

- 1. VersusTech commercial infrared badge proximity system
- 2. RF Proximity using the Berkeley motes
- 3. SICK LMS-200 180° infrared laser range finders
- 4. MIT Cricket ultrasound range beacons
- 5. Indoor harmonic radar, in progress
- 6. 802.11b WiFi triangulation system, *in progress*

49

7. Cellular telephone E-OTD, *planned*

Person Tracking with Anonymous and Id-Sensors: Concept

- Use Rao-Blackwellised particle filters to efficiently estimate locations
 - Each particle is an association history between Kalman filter object tracks and observations.
 - Due to initial id uncertainty, starts by tracking using only anonymous sensors and estimating object id's with sufficient statistics.
 - Once id estimates are certain enough, sample id them using a fully Rao-Blackwellised particle filter over both object tracks and id assignments.

[Fox, Hightower, and Schulz., Submitted to IJCAI, 2003]

Vector Space Example									1		
		а	b	с	d	е	f	q	h	L	
a: System and human system engineering	Interface	0	0	1	0	0	0	0	0	0	
testing of EPS	User	0	1	1	0	1	0	0	0	0	
 A survey of user opinion of computer system response time 	System	2	1	1	0	0	0	0	0	0	
- c: The EPS user interface management system	Human	1	0	0	1	0	0	0	0	0	
d: Human machine interface for ABC computer	Computer	0	1	0	1	0	0	0	0	0	
applications	Response	0	1	0	0	1	0	0	0	0	
e: Relation of user perceived response time to	Time	0	1	0	0	1	0	0	0	0	
f: The generation of random binary ordered	EPS	1	0	1	0	0	0	0	0	0	
trees	Survey	0	1	0	0	0	0	0	0	1	
g: The intersection graph of paths in trees	Trees	0	0	0	0	0	1	1	1	0	
h: Graph minors IV: Widths of trees and well-	Graph	0	0	0	0	0	0	1	1	1	
quasi-ordering	Minors	0	0	0	0	0	0	0	1	1	
i: Graph minors: A survey											
										67	
		_	_	_	_	_	_	_	_	_	

<u>AAAAA</u>	tf * idf		
111	$w_{ik} = tf_{ik} * \log(N / n_k)$		
	$T_k = \text{term } k \text{ in document } D_i$		
	tf_{ik} = frequency of term T_k in document D_i		
	idf_k = inverse document frequency of term T_k in C		
	N = total number of documents in the collection C		
	n_k = the number of documents in C that contain T_k		
000	$idf_k = \log\left(\frac{N}{n_k}\right)$		
0.0		73	

Details

- Set head q₀ of user query to "true"
- Compute posterior probability $P(D \mid q_0)$
- "User information need" doesn't have to be a query - can be a user profile, *e.g.*, other documents user has read
- Instead of just words, can include phrases, inter-document links
- Link matrices can be modified over time.
 User feedback
 - The promise of "personalization"

2003-1-30

84

