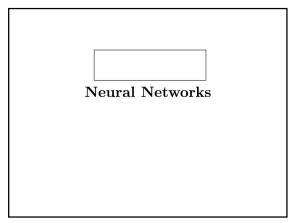


Neural Networks & Data Mining

Henry Kautz Winter 2003



Preview

- Perceptrons
- Gradient descent
- Multilayer networks
- Backpropagation

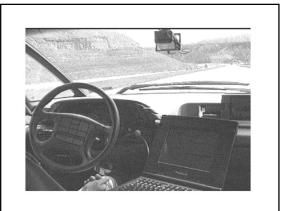
Connectionist Models

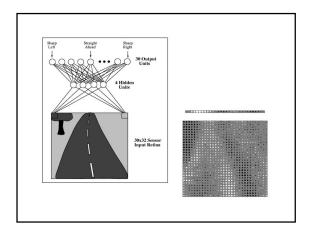
Consider humans:

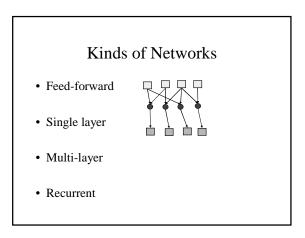
- Neuron switching time \sim .001 second
- Number of neurons $\sim 10^{10}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time $\sim .1$ second
- $\bullet~100$ inference steps doesn't seem like enough
- \Rightarrow Much parallel computation

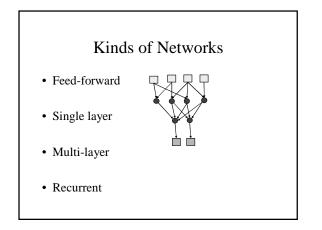
Properties of neural nets:

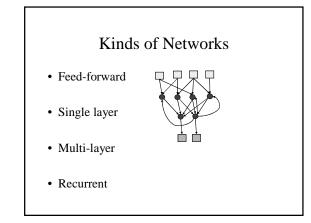
- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

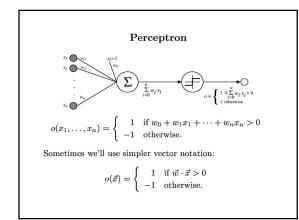


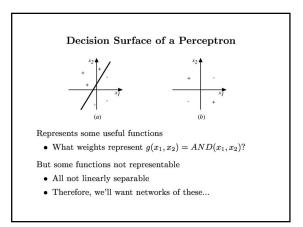


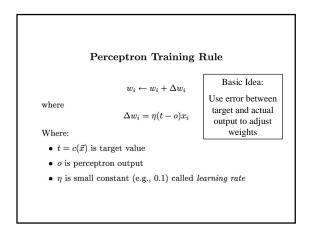


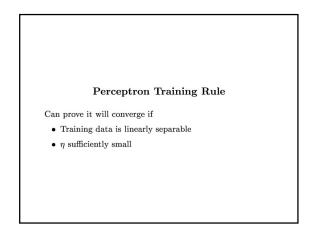




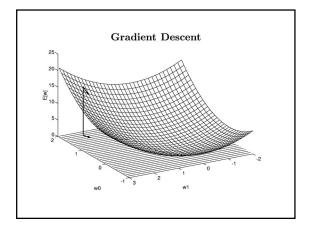


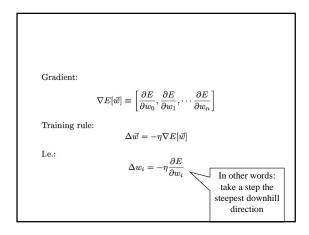


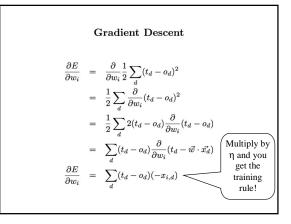




Gradient Descent To understand, consider simpler *linear unit*, where $o = w_0 + w_1 x_1 + \dots + w_n x_n$ Let's learn w_i 's that minimize the squared error $E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$ Where D is set of training examples







Gradient Descent

$$\label{eq:GRADIENT-DESCENT} \begin{split} \text{Gradient-Descent}(training_examples, \eta) \\ \text{Initialize each } w_i \text{ to some small random value} \end{split}$$

Until the termination condition is met, Do

• Initialize each Δw_i to zero.

- For each $\langle \vec{x}, t \rangle$ in training_examples, Do - Input instance \vec{x} to unit and compute output o
 - For each linear unit weight w_i , Do

 $\Delta w_i \leftarrow \Delta w_i + \eta (t - o) x_i$

- For each linear unit weight w_i , Do
 - $w_i \leftarrow w_i + \Delta w_i$

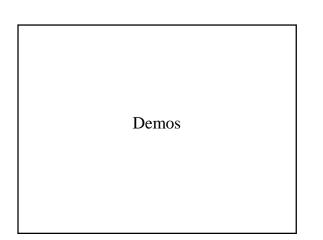
Summary

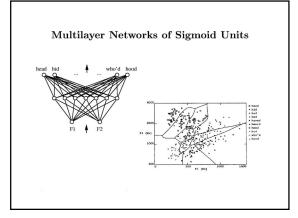
Perceptron training rule guaranteed to succeed if

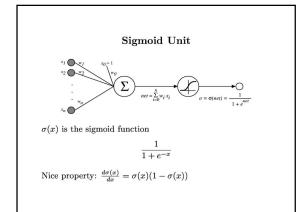
- Training examples are linearly separable
- + Sufficiently small learning rate η

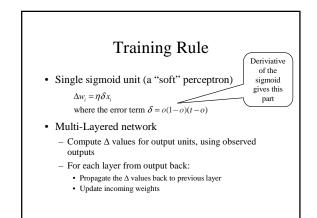
Linear unit training rule uses gradient descent

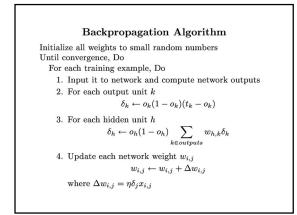
- Guaranteed to converge to hypothesis with minimum squared error
- + Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by ${\cal H}$

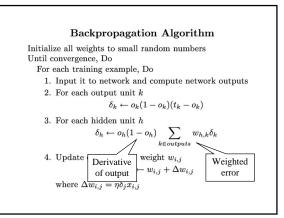








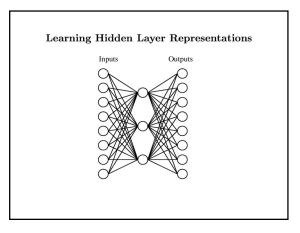




More on Backpropagation

- $\bullet\,$ Gradient descent over entire $\mathit{network}\, weight\, vector$
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum

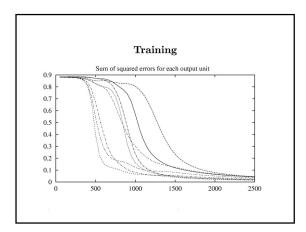
 In practice, often works well
 (can run multiple times)
- Minimizes error over *training* examples - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

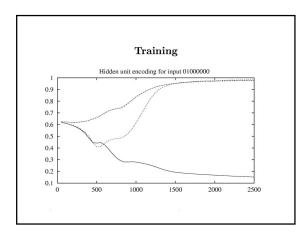


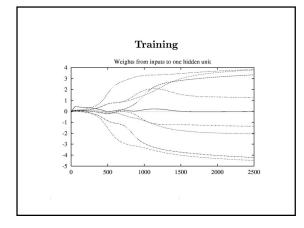
Input	Output		
10000000	\rightarrow	10000000	
01000000	\rightarrow	01000000	
00100000	\rightarrow	00100000	
00010000	\rightarrow	00010000	
00001000	\rightarrow	00001000	
00000100	\rightarrow	00000100	
00000010	\rightarrow	00000010	
00000001	\rightarrow	00000001	

Input	Hidden					Output	
			Value	3			
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000	
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000	
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000	
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000	
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000	
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100	
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010	
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001	

5







Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

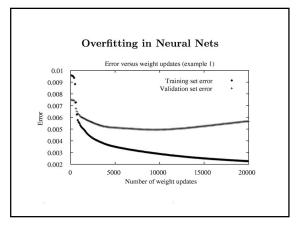
Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

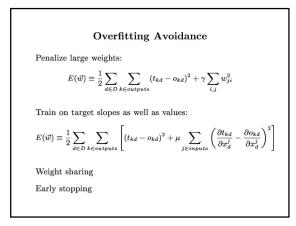
Expressiveness of Neural Nets

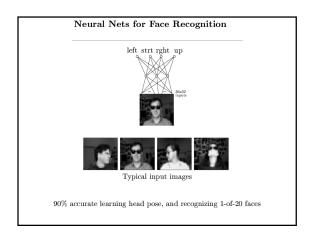
Boolean functions:

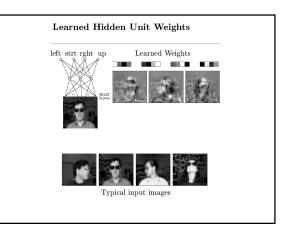
- Every Boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units
- Continuous functions:
- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

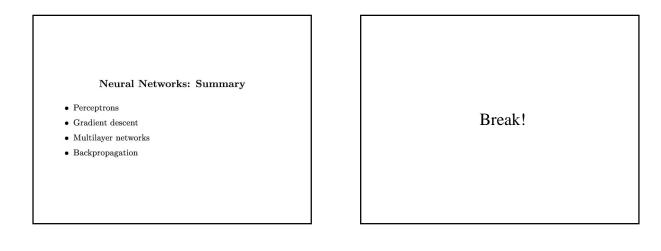


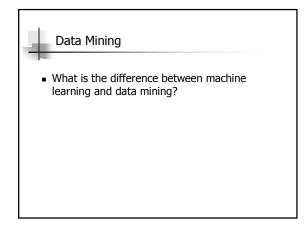


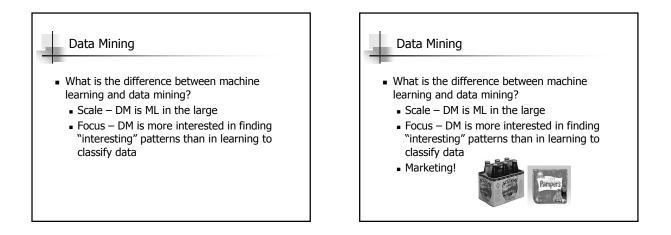












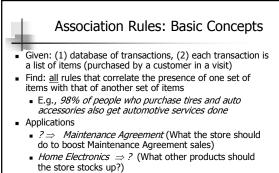
Mining Association Rules in Large Databases

- Introduction to association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- Constraint-based association mining
- Summary

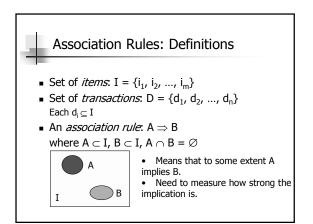
What Is Association Rule Mining?

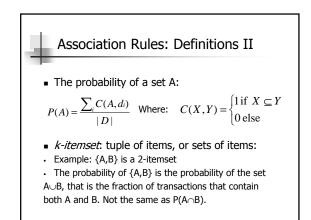
Association rule mining:

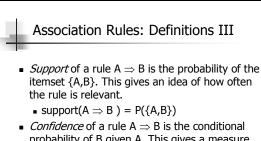
- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- Applications:
 - Basket data analysis, cross-marketing, catalog design, lossleader analysis, clustering, classification, etc.
- Examples:
 - Rule form: "Body \rightarrow Head [support, confidence]".
 - buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") \land takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]



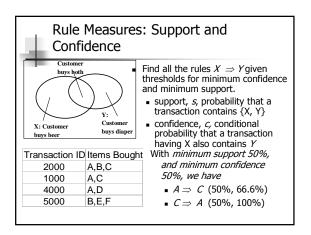
Attached mailing in direct marketing



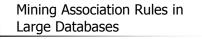




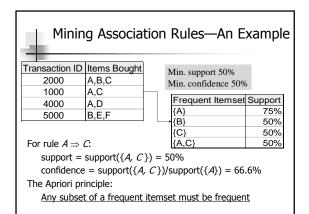
- Conndence of a rule A ⇒ B is the conditional probability of B given A. This gives a measure of how accurate the rule is.
 - confidence(A \Rightarrow B) = P(B|A)
 - = support({A,B}) / support(A)

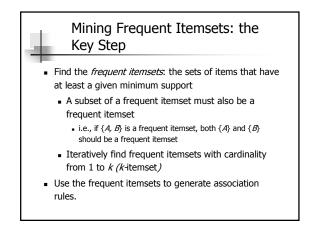


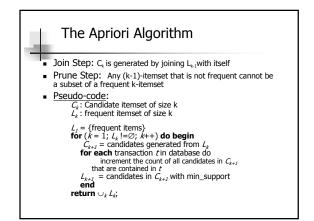
- Boolean vs. quantitative associations (Based on the types of values handled)
 - buys(x, "SQLServer") ^ buys(x, "DMBook") \rightarrow buys(x, "DBMiner") [0.2%, 60%]
 - age(x, "30..39") ^ income(x, "42..48K") \rightarrow buys(x, "PC") [1%, 75%]
 - Single dimension vs. multiple dimensional associations (see ex. Above) Single level vs. multiple-level analysis
 - What brands of beers are associated with what brands of diapers?
 Various extensions and analysis
 - Correlation, causality analysis
 - Association does not necessarily imply correlation or causality
 - Association does not necessarily
 Maxpatterns and closed itemsets
 - Constraints enforced
 - E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

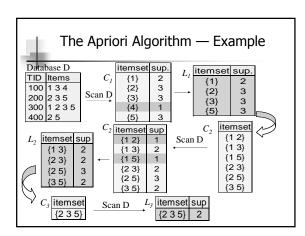


- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary









How to do Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1} insert into C. select p.itemy p.itemy ..., p.itemk-y q.itemk-1 from L_{k-1} p, L_{k-1} q where p.item1=q.item1, ..., p.itemk-2=q.itemk-2, p.itemk-1 < q.item_{k-1} Step 2: pruning
- forall itemsets c in Ck do forall (k-1)-subsets s of c do if (s is not in L_{k-1}) then delete c from C_k

Example of Generating Candidates

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
- acde is removed because ade is not in L₃
- *C*₄={*abcd*}

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

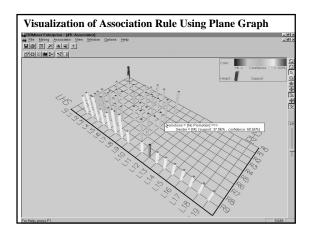
Is Apriori Fast Enough? — Performance Bottlenecks

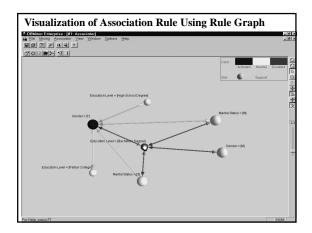
- The core of the Apriori algorithm:
 - Use frequent (k-1)-itemsets to generate <u>candidate</u> frequent kitemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets - To discover a frequent pattern of size 100, e.g., {a_1, a_2, ..., a_{100}}, one needs to generate $2^{100}\approx 10^{30}$ candidates.
 - Multiple scans of database:
 - Needs (n+1) scans, n is the length of the longest pattern

Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

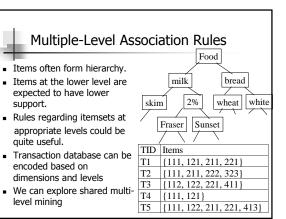
Presentation of Association Rules (Table Form) nf (%) 40.4 H I -Body = 10.00-1000.00 = 10.00~1000.00 = 10.00~1000.00 20.46 59.17 10.45 22.56 12.91 28.45 12.91 25.9 59.17 13.52 25.9 22.56 28.45 28.45 28.45 10.45 10.45 20.46 29.05 84.04 14.84 32.04 69.34 34.54 15.67 31.45 71.86 16.42 23.88 98.72 81.94 71.39 100 100 500.00~1000) = 0.00~100.00 order_qty 0.00-1000.00 0.00~1000.00 region(x) = order_qty(revenue(v) cost(x) = U product_lin revenue(x) order_qty() cost(x) = U = 500.00~1000.0) = 0.00~100.00) = 0.00~100.00 96.75 100 96.14 (x) = 11 00~1000.00 revenue(x) = 0.00~500.00' AND roder_rts/x) = 0.00~100.00' 28.45 40.4 revenue(x) = 0.00~500.00' AND order_qty(x) = 0.00~100.00' 40.4 t(x) = 0.00-1000.00 28.45 revenue(x) = 500.00~1000.00' AND order_qty(x) = 0.00~100.00' 19.67 27.93 st(x) = 0.00-1000.00 ==> revenue(x) = 500.00~1000.00' AND order_qty(x) = 0.00~100.00' ost(x) = 0.00-1000.00' 19.67 27.93 cost(x) = 0.00~1000.00' AN order_sty(x) = 0.00~100.00 Sheett ue(x) = 500.00-1000.00 19.67 33.23

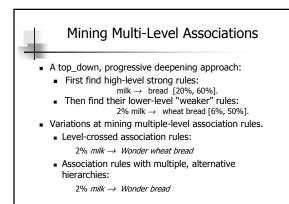




Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary



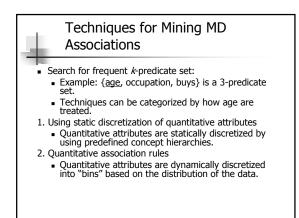


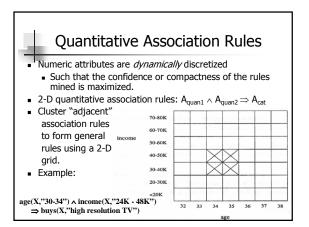
Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- Constraint-based association mining
- Summary

Multi-Dimensional Association: Concepts

- Single-dimensional rules:
- buys(X, "milk") \Rightarrow buys(X, "bread")
- Multi-dimensional rules: O 2 dimensions or predicates
 Inter-dimension association rules (*no repeated predicates*)
 - age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")
 - hybrid-dimension association rules (*repeated predicates*)
 hybrid-dimension association rules (*repeated predicates*)
- $age(X,"19-25'') \land buys(X, "popcorn") \Rightarrow buys(X, "coke")$ Categorical Attributes
- finite number of possible values, no ordering among values
- Quantitative Attributes
- numeric, implicit ordering among values





Mining Association Rules in Large Databases

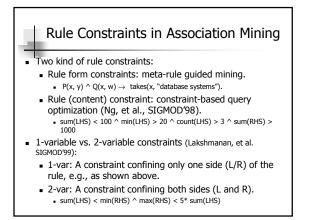
- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- Constraint-based association mining
- Summary

Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- Constraint-based association mining
- Summary

Constraint-Based Mining Interactive, exploratory mining giga-bytes of data? Could it be real? — Making good use of constraints! What kinds of constraints can be used in mining? Knowledge type constraint: classification, association, etc. Data constraint: SQL-like queries Find product pairs sold together in Vancouver in Dec.'98. Dimension/level constraints: in relevance to region, price, brand, customer category. Rule constraints

- small sales (price < \$10) triggers big sales (sum > \$200).
 Interestingness constraints:
- strong rules (min_support ≥ 3%, min_confidence ≥ 60%).



Constrained Association Query Optimization Problem

- Given a CAQ = { (S_i, S_i) / C }, the algorithm should be :
 sound: It only finds frequent sets that satisfy the given constraints C
 - complete: All frequent sets satisfy the given constraints C are found
- A naïve solution:
- Apply Apriori for finding all frequent sets, and then to test them for constraint satisfaction one by one.
- More advanced approach:
 Comprehensive analysis of the properties of constraints and try to push them as deeply as possible inside the frequent set computation.

Summary

- Association rules offer an efficient way to mine interesting probabilities about data in very large databases.
- Can be dangerous when misinterpreted as signs of statistically significant causality.
- The basic Apriori algorithm and it's extensions allow the user to gather a good deal of information without too many passes through data.

Data Mining: Clustering

Preview

- Introduction
- Partitioning methods
- Hierarchical methods
- Model-based methods
- Density-based methods

What is Clustering?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
- Grouping a set of data objects into clusters
- Clustering is unsupervised classification:
- no predefined classesTypical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Examples of Clustering Applications

- <u>Marketing:</u> Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>Urban planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- <u>Seismology</u>: Observed earth quake epicenters should be clustered along continent faults

What Is a Good Clustering?

- A good clustering method will produce clusters with
 - High <u>intra-class</u> similarity
- Low <u>inter-class</u> similarity
- Precise definition of clustering quality is difficult
 - Application-dependent
 - Ultimately subjective

Requirements for Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal domain knowledge required to determine input parameters
- Ability to deal with noise and outliers
- Insensitivity to order of input records
- Robustness wrt high dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Similarity and Dissimilarity Between Objects

- Properties of a metric d(i,j):
 - *d(i,j)* ≥ 0
 - d(i,i) = 0
 - $\bullet d(i,j) = d(j,i)$
 - $\bullet d(i,j) \leq d(i,k) + d(k,j)$

Major Clustering Approaches

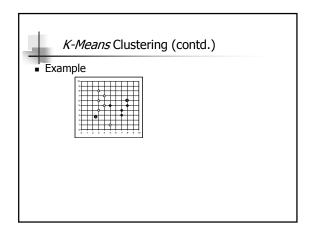
- <u>Partitioning</u>: Construct various partitions and then evaluate them by some criterion
- <u>Hierarchical</u>: Create a hierarchical decomposition of the set of objects using some criterion
- <u>Model-based</u>: Hypothesize a model for each cluster and find best fit of models to data
- <u>Density-based</u>: Guided by connectivity and density functions

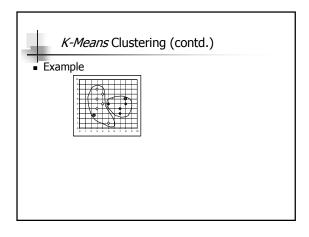
Partitioning Algorithms

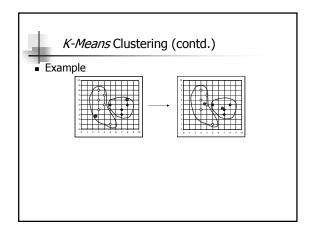
- <u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters
- Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen, 1967): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw, 1987): Each cluster is represented by one of the objects in the cluster

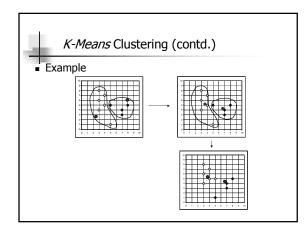
K-Means Clustering

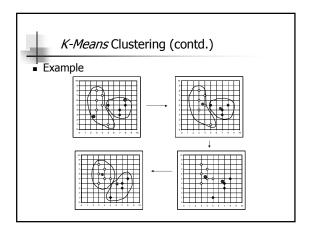
- Given *k*, the *k-means* algorithm consists of four steps:
 - Select initial centroids at random.
 - Assign each object to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the objects assigned to it.
 - Repeat previous 2 steps until no change.











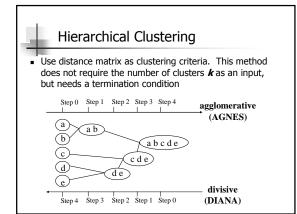
Comments on the K-Means Method

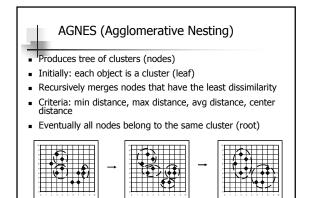
Strengths

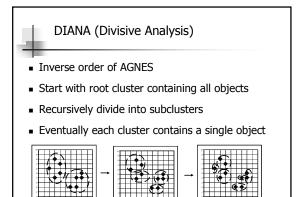
- Relatively efficient: O(tkn), where n is # objects, k is
- # clusters, and t is # iterations. Normally, k, t << n.
 Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as *simulated annealing* and *genetic algorithms*

Weaknesses

- Applicable only when *mean* is defined (what about categorical data?)
- Need to specify *k*, the *number* of clusters, in advance
- Trouble with noisy data and *outliers*
- Not suitable to discover clusters with non-convex shapes







Other Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - <u>Do not scale</u> well: time complexity of at least *Q*(*n*²), where *n* is the number of total objects
 - Can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - <u>BIRCH</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - <u>CURE</u>: selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction

Model-Based Clustering

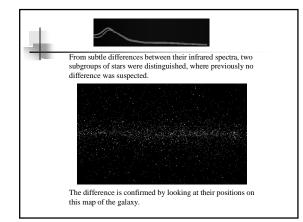
- Basic idea: Clustering as probability estimation
- One model for each cluster
- Generative model:
 - Probability of selecting a cluster
 - Probability of generating an object in cluster
- Find max. likelihood or MAP model
- Missing information: Cluster membership
 Use EM algorithm
- Quality of clustering: Likelihood of test objects

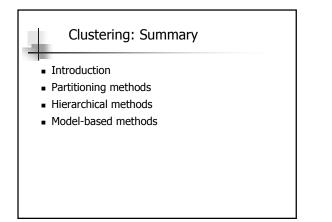
http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/

AutoClass

An unsupervised Bayesian classification system that seeks a maximum posterior probability classification. Key features:

- determines the number of classes automatically;
- can use mixed discrete and real valued data;
- can handle missing values uses EM (Expectation Maximization)
- processing time is roughly linear in the amount of the data;
- cases have probabilistic class membership;
- allows correlation between attributes within a class;
- generates reports describing the classes found; and
- predicts "test" case class memberships from a "training" classification





Next week: Making Decisions From utility theory to reinforcement learning

- Finish assignments!
- Start (or keep rolling on project)
 - Today's status report in my mail ASAP (next week at the latest)