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[ Preferences |

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

A
P
L
Lottery L = [p, A: (1—p), B] 1-p
B
Notation:
A-B A preferred to B
A~B indifference between A and B
AZB B not preferred to A
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| Rational preferences |

Idea: preferences of a rational agent must obey constraints.
Rational preferences =
behavior describable as maximization of expected utility

Constraints:

Orderability

(A-B)V(B> A)V(A~B)
Transitivity

(A-B)A(B>C) = (A-C)
Continuity

A»B>C = 3dp [pA 1-p,C]~B
Substitutability

A~B = [pA 1—p,Cl~[p,B:1—p,C]
Monotonicity

A-B = (p>q & [p,A 1—p B]Z g, A 1—q,B])
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[ Rational preferences contd. [§

iolating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give

away all its money
~A
14
B\ C
N

lc

If B > C, then an agent who has C'
would pay (say) 1 cent to get B

If A = B, then an agent who has B
would pay (say) 1 cent to get A

If C' > A, then an agent who has A
would pay (say) 1 cent to get C
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Maximizing expected utility |

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

U(A)>UB) &« AXB

Ullpy, Stz ... ¢ peySal) = 2, pU(S,)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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[ Utilities ]

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” ut with probability p
“worst possible catastrophe” w1 with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before
0.999999.

pay $30 ~ L

0:00000 instant death

Chapter 15
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Utility scales

Normalized utilities: ut = 1.0, u; = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation
U'(z) = kyU(z) + ko where ky >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes

Chupteris 5
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| ~—  Student group utility

For each z, adjust p until half the class votes for lottery (M=10,000)

[ 1 1 I 1 I 1 I 1 1
0 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Clopis 10

$x

T~

| Money u

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L)
usually U(L) < U(EMV(L)), i.e., people are risk-averse

Utility curve: for what probability p am | indifferent between a prize = and
a lottery [p, $M: (1 — p),$0] for large M?

Typical empirical data, extrapolated with risk-prone behavior:

+U
P
+$
-150,000 a0d.000
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I Decision networks |

'Add action nodes and utility nodes to belief networks
to enable rational decision making

Algorithm:
For each value of action node
compute expected value of utility node given action, evidence
Return MEU action
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| Preference structure: Deterministic ]

X, and X, preferentially independent of X iff
preference between (x1, 2, 23) and (], 15, x3)
does not depend on z3

E.g.. (Noise,Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its com-
plement, then every subset of attributes is P.| of its complement: mutual
Pl.

Theorem (Debreu, 1960): mutual PI. = 3 additive value function:
V(S) = E,Vi(X,(9))

Hence assess n single-attribute functions; often a good approximation
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[ ~— Value of information ]

dea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k&
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A" or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of “buy A" given “oil in A"
+ 0.5 x value of “buy B” given “no oil in A”]
-0
= (0.5 % k/2) + (0.5 % k/2) — 0= k/2
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| — Qualitative behaviors |

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
¢) Choice is nonobvious, information worth little

B(UIE) B(UIE)) B(UIE))
T T v T T
u. U, U, A
@ ®) ©
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{ Decision problems
¢ Value iteration

{ Policy iteration
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[ Example MDP §

3 (Ean)
2 =
08
1| smar o1 o1
1 2 3 s

Model M;; = P(jli,a) = probability that doing a in i leads to j

Each state has a reward R(i)
= -0.04 (small penalty) for nonterminal states
= =1 for terminal states

AIMA Stdes @5

Sequential decision problems I
Search
explicit actions uncertainty
al and utility
Plannin Markov decision
9 problems (MDPs) =~
" explicit actions " ”
uncortanty ool uncertin ; (belief states)
/
Decision-theoretic Panial%observable /
planning MDPs (POMDPs)
[ Solving MDPs I

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal policy
i.e., best action for every possible state
(because can't predict where one will end up)

Optimal policy and state values for the given R(i):

— 3 0812 | 0.868 | 0.912

~
: ? . * E ’ o . -
-

1 * - - 1 0705 | 0.655 | 0.611 | 0.388
1 2 3 4 1 2 3 4

I Ttility 1

In sequential decision problems, preferences are expressed
between sequences of states

Usually use an additive utility function:
U([s1, 52,83, ---,84]) = R(s1) + R(s2) + R(s3) + - - - + R(s,)
(cf. path cost in search problems)

Utility of a state (a.k.a. its value) is defined to be
U(s;) = expected sum of rewards until termination
assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU:
choose the action such that the expected utility of the immediate suc-
cessors is highest.

AIMA Sides @Stunrt Rumel and Peer Norv, 108 Chapter 17, Sectona 13 €

| Bellman equation |

Definition of utility of states leads to a simple relationship among utilities
of neighboring states:

expected sum of rewards
= current reward
+ expected sum of rewards after taking best action

Bellman equation (1957):
U(i) = R(i) + muaxEjU(j)ML“l

U(1,1) = —0.04
+ max{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), up
0.9U(1,1) + 0.1U(1,2) left
0.9U(1,1) + 0.1U(2,1) down
0.8U(2,1) + 0.1U(1,2) + 0.1U(1, 1)} right

One equation per state = n nonlinear equations in n unknowns

et sl and Pt Norvs, 108

| Value iteration algorithm I§

Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqn
Everywhere locally consistent = global optimality

repeat until “no change”

U(i) + R(i) + max S;U()M  for all i

'

“n

Uslity esimtes

n “2
3 E)

s E)
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| Policy iteration (Howard, 1960)

Idea: search for optimal policy and utility values simultaneously

Algorithm:
7 = an arbitrary initial policy
repeat until no change in 7
compute utilities given 7
update 7 as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed m:
U(i) = R(i) + S;U()M;Y foralli

i.e., n simultaneous linear equations in n unknowns, solve in ()(ns)

[ What if I live forever? (digression)

Using the additive definition of utilities, U (i)s are infinite!
Moreover, value iteration fails to terminate

How should we compare two infinite lifetimes?

1) Discounting: future rewards are discounted at rate y <1

U(fso, - s]) = BZg7"R(s1)

Maximum utility bounded above by Ru./(1 —7)
Smaller v = shorter horizon

2) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver's daily scheme cruising for passengers

* Notruly pra
POMDP's (

Bob:Tefuse




Large state spacespreblematie

¢ Generdlization
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maximizes Q(a,$
* Problem?

* Why do this?
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