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Making Decisions

CSE 592 Winter 2003

Henry Kautz

Today

• Making Simple Decisions

• Making Sequential Decisions
• Planning under uncertainty

• Reinforcement Learning
• Learning to act based on punishments and 

rewards
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Summary

• Rational preferences yields utility theory
• MEU: maximize expected utility

• Highest expected reward over time
• Not only possible decision rule!

• Can map non-linear quantities (e.g. money) to 
linear utilities

• Influence diagrams = Bayes net + decision nodes: 
MEU

• Can compute value of gaining information
• Preferential independence yields utility functions 

that are linear combinations of state attributes

Break
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Error Bounds
• Error between true/estimated value of a 

state reduced by discount factor λ at each 
iteration
• Exponentially fast convergence

• But still takes a long time if λ close to 1

• Optimal policy often found long before 
state utility estimates converge

What’s Hard About MDP’s?

• MDP’s are only hard to solve if the state 
space is large
• Suppose a state is described by a set of 

propositional variables (e.g., probabilistic 
version of STRIPS planning)

• Current research topic: performing value or 
policy iteration directly on a (small) 
representation of a large state space

• Dan Weld & Mausam 2003

What’s Hard About MDP’s?

• MDP’s are only hard to solve if the state 
space is large
• Suppose world is only partially observed
• Agent assigns a probability distribution over 

possible values to each variable
• “State” for the MDP becomes the agent’s state 

of belief – exponentially larger!
• No truly practical algorithms for general 

POMDP’s (yet)

Multi-Agent MDP’s
• Payoff matrix – specify rewards 2 or more 

agents receive after each performs an action

• Game theory – von Neuman – every zero-
sum game has an optimal mixed (stochastic) 
strategy

A=-1, B=-1A=0, B=-10Bob: refuse

A=-10, B=0A=-5, B=-5Bob: testify

Alice: refuseAlice: testify
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Summary
• Markov Decision Processes provide a general way 

of reasoning about sequential decision problems

• Solved by linear programming, value iteration, or 
policy iteration

• Discounting future rewards guarantees convergence 
of value/policy iteration

• Requires complete model of the world (i.e. the state 
transition function)
• MPD – complete observations

• POMDP – partial observations

• Large state spaces problematic

Break

Reinforcement Learning
• “Of several responses made to the same situation, those 

which are accompanied or closely followed by satisfaction to 
the animal will, other things being equal, be more firmly 
connected with the situation, so that, when it recurs, they 
will be more likely to recur; those which are accompanied or 
closely followed by discomfort to the animal will, other 
things being equal, have their connections with that situation 
weakened, so that, when it recurs, they will be less likely to 
occur. The greater the satisfaction or discomfort, the greater 
the strengthening or weakening of the bond.” (Thorndike, 
1911, p. 244) 

The Reinforcement Learning 
Scenario

• How is learning to act possible when…
• Actions have non-deterministic effects, that are 

initially unknown

• Rewards or punishments come infrequently, at 
the end of long sequences of actions

• The learner must decide what actions to take

• The world is large and complex

RL Techniques

• Temporal-difference learning
• Learns a utility function on states or on [state,action] 

pairs
• Similar to backpropagation – treats the difference 

between expected / actual reward as an error signal, that 
is propagated backward in time

• Exploration functions
• Balance exploration / exploitation

• Function approximation
• Compress a large state space into a small one
• Linear function approximation, neural nets, …
• Generalization

Passive RL

• Given policy π, estimate Uπ(s)

• Not given transition matrix or 
reward function!

• Epochs: training sequences

(1,1)!(1,2)!(1,3)!(1,2)!(1,3)!(1,2)!(1,1)!(1,2)!(2,2)!(3,2) –1
(1,1)!(1,2)!(1,3)!(2,3)!(2,2)!(2,3)!(3,3) +1
(1,1)!(1,2)!(1,1)!(1,2)!(1,1)!(2,1)!(2,2)!(2,3)!(3,3) +1
(1,1)!(1,2)!(2,2)!(1,2)!(1,3)!(2,3)!(1,3)!(2,3)!(3,3) +1
(1,1)!(2,1)!(2,2)!(2,1)!(1,1)!(1,2)!(1,3)!(2,3)!(2,2)!(3,2) -1
(1,1)!(2,1)!(1,1)!(1,2)!(2,2)!(3,2) -1
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Approaches

• Direct estimation
• Estimate Uπ(s) as average total reward of 

epochs containing s (calculating from s to end 
of epoch)

• Requires huge amount of data – does not take 
advantage of Bellman constraints!

• Expected utility of a state = its own reward + 
expected utility of its successor states

Approaches
• Adaptive Dynamic Programming

• Requires fully observable environment

• Estimate transition function M from training data

• Apply modified policy iteration to solve 
Bellman equation:

• Drawbacks: requires complete observations, and 
you don’t usually need value of all states
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Temporal Difference Learning

• Ideas
• Do backups on a per-epoch basis

• Don’t even try to estimate entire transition 
function! 

• For each transition from s to s’, update:
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Example:

Q-Learning
• Version of TD-learning where instead of 

learning a value function on states, we learn 
one on [state,action] pairs

• Why do this?
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Active Reinforcement Learning

• Suppose agent has to create its own policy 
while learning

• First approach:
• Start with arbitrary policy
• Apply Q-Learning
• New policy: in state s, choose action a that 

maximizes Q(a,s)
• Problem?
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Exploration Functions

• Too easily stuck in non-optimal space

• Simple fix: with fixed probability perform a 
random action

• Better: increase estimated expected value of 
states that have been rarely explored

• “Exploration versus exploitation tradeoff”

Function Approximation

• Problem of large state spaces remain
• Never enough training data!
• Want to generalize what has been learned to 

new situations

• Idea: 
• Replace large state table by a smaller, 

parameterized function
• Updating the value of state will change the 

value assigned to many other similar states

Linear Function Approximation

• Represent U(s) as a weighted sum of 
features (basis functions) of s

• Update each parameter separately, e.g:
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Neural Nets

• Neural nets can be used to create powerful 
function approximators

• Can become unstable (unlike linear 
functions)

• For TD-learning, apply difference signal to 
neural net output and perform back-
propagation

Example Demo
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Summary

• Use reinforcement learning when model of world 
is unknown and/or rewards are delayed

• Temporal difference learning is a simple and 
efficient training rule

• Q-learning eliminates need to ever use an explicit 
model of the transition function

• Large state spaces can (sometimes!) be handled by 
function approximation, using linear functions or 
neural nets


