
Natural Language
Understanding

Henry Kautz
CSE P573, Autumn 2004

Tonight

• Lists in Prolog
• Overview of natural language

understanding
• Parsing sentences
• Generating the logical form of a sentence

Lists

• Lists are the same as other languages
(such as ML) in that a list of terms of any
length is composed of list cells that are
‘consed’ together.

• The list of length 0 is called nil, written [].
• The list of length n is .(head,tail), where

tail is a list of length n-1.
• So a list cell is a functor ‘.’ of arity 2. Its

first component is the head, and the
second component is the tail.

Examples of lists

nil
.(a, nil)
.(a, .(b, nil)
.(a, .(b, .(c, .(d, .(e. nil)))))
.(a,b) (note this is a pair, not a proper list)
.(a, X) (this might be a list, or might not!)
.(a, .(b, nil)), .(c, nil))

They can be written as trees

a
b ni

a ni
a b a X

a
b

c
d

e ni

a
b ni

a ni

Prolog Syntax for Lists

Nil is written [].
The list consisting of n elements t1, t2, …,tn
is written [t1, t2, …,tn].
.(X,Y) is written [X|Y]
[X|[]] is written [X]
The term .(a, .(b, .(c,Y))) is written [a,b,c|Y].
If Y is instantiated to [], then the term is a
list, and can be written [a,b,c|[]] or simply
[a,b,c].

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[]
[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

a [b, c]
[a]
[]
[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
a []

[]
[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[] (not a list, so doesn’t have head and tail. nil is a constant)

[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[]
[the, cat] [sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[]
[[the, cat], sat]
[the, cardinal] [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

For each pair of terms, determine whether
they unify, and if so, to which terms are the
variables instantiated?

[X, Y, Z] [john, likes, fish]
[cat] [X|Y]
[X,Y|Z] [mary, likes, wine] (picture on next slide)

[[the,Y]|Z] [[X,answer], [is, here]]
[X, Y, X] [a, Z, Z]
[[X], [Y], [X]] [[a], [X], [X]]

Remember

A variable may be instantiated to any term.

X

Y Z
mar

like
win [

[mary, likes, wine] [X,Y|Z]

Fun with Lists (Worksheet 5)

/* member(Term, List) */
member(X, [X|T]).
member(X, [H|T]) :- member(X, T).

Examples:
?- member(john, [paul, john]).
?- member(X, [paul, john]).
?- member(joe, [marx, darwin, freud]).
?- member(foo, X).

Communication

“Classical” view (pre-1953):
language consists of sentences that are true/false (cf. logic)

“Modern” view (post-1953):
language is a form of action

Wittgenstein (1953) Philosophical Investigations

Austin (1962) How to Do Things with Words

Searle (1969) Speech Acts

Why?

To change the actions of other agents

Chapter 22 6

Speech acts

SITUATION

Speaker Utterance Hearer

Speech acts achieve the speaker’s goals:
Inform “There’s a pit in front of you”
Query “Can you see the gold”
Command “Pick it up”
Promise “I’ll share the gold with you”
Acknowledge “OK”

Speech act planning requires knowledge of
– Situation
– Semantic and syntactic conventions
– Hearer’s goals, knowledge base, and rationality

Chapter 22 7

Stages in communication (informing)

Intention S wants to inform H that P

Generation S selects words W to express P

Synthesis S utters words W

Perception H perceives W ′

Analysis H infers possible meanings P1, . . . Pn

Disambiguation H infers intended meaning Pi

Incorporation H incorporates Pi into KB

How could this go wrong?
– Insincerity (S doesn’t believe P)
– Speech wreck ignition failure
– Ambiguous utterance
– Differing understanding of current situation

Chapter 22 9

Grammar

Vervet monkeys, antelopes etc. use isolated symbols for sentences
⇒ restricted set of communicable propositions, no generative capacity

(Chomsky (1957): Syntactic Structures)

Grammar specifies the compositional structure of complex messages
e.g., speech (linear), text (linear), music (two-dimensional)

A formal language is a set of strings of terminal symbols

Each string in the language can be analyzed/generated by the grammar

The grammar is a set of rewrite rules, e.g.,

S → NP VP

Article → the | a | an | . . .

Here S is the sentence symbol, NP and VP are nonterminals

Chapter 22 10

Grammar types

Regular: nonterminal → terminal[nonterminal]

S → aS

S → Λ

Context-free: nonterminal → anything

S → aSb

Context-sensitive: more nonterminals on right-hand side

ASB → AAaBB

Recursively enumerable: no constraints

Related to Post systems and Kleene systems of rewrite rules

Natural languages probably context-free, parsable in real time!

Chapter 22 11

Wumpus lexicon

Noun → stench | breeze | glitter | nothing

| wumpus | pit | pits | gold | east | . . .

Verb → is | see | smell | shoot | feel | stinks

| go | grab | carry | kill | turn | . . .

Adjective → right | left | east | south | back | smelly | . . .

Adverb → here | there | nearby | ahead

| right | left | east | south | back | . . .

Pronoun → me | you | I | it | . . .

Name → John | Mary | Boston | UCB | PAJC | . . .

Article → the | a | an | . . .

Preposition → to | in | on | near | . . .

Conjunction → and | or | but | . . .

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Divided into closed and open classes

Chapter 22 12

Wumpus grammar

S → NP VP I + feel a breeze
| S Conjunction S I feel a breeze + and + I smell a wumpus

NP → Pronoun I
| Noun pits
| Article Noun the + wumpus
| Digit Digit 3 4
| NP PP the wumpus + to the east
| NP RelClause the wumpus + that is smelly

VP → Verb stinks
| VP NP feel + a breeze
| VP Adjective is + smelly
| VP PP turn + to the east
| VP Adverb go + ahead

PP → Preposition NP to + the east
RelClause → that VP that + is smelly

Chapter 22 14

Grammaticality judgements

Formal language L1 may differ from natural language L2

L1 L2

false
positives

false
negatives

Adjusting L1 to agree with L2 is a learning problem!

* the gold grab the wumpus
* I smell the wumpus the gold

I give the wumpus the gold
* I donate the wumpus the gold

Intersubjective agreement somewhat reliable, independent of semantics!
Real grammars 10–500 pages, insufficient even for “proper” English

Chapter 22 15

Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Chapter 22 16

Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

Chapter 22 17

Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

NP VP NP

Chapter 22 18

Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

NP VP NP

VP

Chapter 22 19

Parse trees

Exhibit the grammatical structure of a sentence

I shoot the wumpus

Pronoun Verb Article Noun

NP VP NP

VP

S

Chapter 22 20

Neil Leslie VUW COMP 304 2003

2 A formal grammar for English

We can describe simple sentences of English with the following
grammar:

S → NP,VP

NP → Det,N

VP → V,NP

VP → V

Det → the

N → apple

N → man

V → eats

V → sings

Prolog: Parsing 3

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

3 Writing a parser for this grammar in
Prolog

For simplicity, we suppose that we are trying to parse a list of Prolog
atoms.

We will write Prolog predicates like:

❀ sentence(Sentence), which will be true if Sentence is a list of
words which can be parsed as a sentence,

❀ det(Det), which will be true if Det is a list of words which can be
parsed as a determiner,

❀ and so on.

The structure of our Prolog program will reflect closely the structure
of the grammar.

Prolog: Parsing 4

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

3.1 Sentences

Our grammar tells is that a list of atoms will be a sentence if it can be
split up into a list of atoms which can be parsed as a noun phrase
followed by a list of atoms which can be parsed as a verb phrase.

We know how to split lists up: we use append.

So we have:

sentence(Sentence) :-

append(NounPhrase, VerbPhrase, Sentence),

nounphrase(NounPhrase),

verbphrase(VerbPhrase).

And this is more-or-less all there is to it!

Prolog: Parsing 5

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

nounphrase(Nounphrase) :-

append(Det, Noun, Nounphrase),

det(Det),

noun(Noun).

verbphrase(Verbphrase) :-

verb(Verbphrase).

verbphrase(Verbphrase) :-

append(Verb, Nounphrase, Verbphrase),

verb(Verb),

nounphrase(Nounphrase).

noun([man]). noun([apple]). verb([eats]). verb([sings]).

det([the]).

Prolog: Parsing 6

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

And now we can ask queries like:

?- sentence([the, man, eats, the, apple])

yes

?- sentence([the, apple])

no

?- nounphrase([the, apple])

yes

Prolog: Parsing 7

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

3.2 Comments

This code use a “generate-and-test” strategy:

❀ generate possible solutions (the different splittings of the input
list);

❀ test them to see if they are suitable.

This is a common strategy when solving AI problems, and is very
useful. However the code we have written generates a lot of possible
solutions which turn out to be incorrect, so this is not a very good
algorithm.

Can we find a more efficient algorithm?

Prolog: Parsing 8

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

3.3 Finding a more efficient algorithm

We know that we can often make “generate-and-test” more efficient
by pushing the test closer to the generation. How can we do this in
the current situation?

We do this by letting predicates like noun perform both the
recognition and the splitting. We do this by letting them accept the
front of a list, and return the rest of the list.

sentence(Tokens, Rest) :-

nounphrase(Tokens, More),

verbphrase(More, Rest).

Prolog: Parsing 9

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

nounphrase(Tokens, Rest) :-

det(Tokens, More),

noun(More, Rest).

verbphrase(Tokens, Rest) :-

verb(Tokens, Rest).

verbphrase(Tokens, Rest) :-

verb(Tokens, More),

nounphrase(More, Rest).

noun([man | Rest], Rest). noun([apple | Rest], Rest).

verb([eats | Rest], Rest). verb([sings | Rest], Rest).

det([the | Rest], Rest).

Prolog: Parsing 10

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

We can now ask queries like:

sentence([the, man, eats, the, apple], Rest)

No.1 : Rest = [the, apple]

No.2 : Rest = []

No more solutions

Prolog: Parsing 11

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

4 Extending the grammar

As is usual we are not interested merely in whether a string parses,
but in the parse tree that is constructed. Prolog lets us build up a
parse tree very easily.

We augment the predicates with an extra argument like:

sentence(Tokens, Rest, sentence(NP, VP)) :-

nounphrase(Tokens, More, NP),

verbphrase(More, Rest, VP).

Prolog: Parsing 12

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

nounphrase(Tokens, Rest, np(Det, N)) :-

det(Tokens, More, Det),

noun(More, Rest, N).

verbphrase(Tokens, Rest, iv(Verb)) :-

verb(Tokens, Rest, Verb).

verbphrase(Tokens, Rest, tv(Verb, NP)) :-

verb(Tokens, More, Verb),

nounphrase(More, Rest, NP).

noun([man | Rest], Rest, man). noun([apple | Rest], Rest, apple).

verb([eats | Rest], Rest, eats). verb([sings | Rest], Rest, sings).

det([the | Rest], Rest, the).

Prolog: Parsing 13

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

Now we can ask;

?- sentence([the, man, eats, the, apple], Rest, Tree)

No.1 : Rest = [the, apple],

Tree = sentence(np(the, man), iv(eats))

No.2 : Rest = [],

Tree = sentence(np(the, man), tv(eats, np(the, apple)))

No more solutions

Prolog: Parsing 14

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Neil Leslie VUW COMP 304 2003

Recall that we can think of Prolog as programming with relations.
Hence we can also ask queries like:

?- sentence(Words,

[],

sentence(np(the, man), tv(eats, np(the, apple))))

No.1 : Words = [the, man, eats, the, apple]

Prolog: Parsing 15

http://www.mcs.vuw.ac.nz/~neil/
http://www.mcs.vuw.ac.nz/courses/COMP304

Exercise

• In groups (no lone wolves!):
– download directory

/cse/courses/csep573/04au/prolog
– launch Prolog
– consult(genesis_syntax).
– Try some examples:

• sentence([Eve,gives,Adam,the,apple], [], Tree).

Sentence Meaning

• In many applications we want to know the
meaning of a sentence, not just its parse
tree

• We can do this in Prolog by adding an
additional argument for the logical form
sentence(Tokens, Rest, s(NP, VP), Wff)

Logical Form

• There is no one “right” way to define the
logical form of a sentence

• One approach:
– Nouns become Terms
– Verbs and Adjectives become Predicates

• Example:
– “Eve loves Adam” ⇒ love(eve,adam)
– “Adam is loved by Eve” ⇒ love(eve,adam)

Semantic Structure

• Issue: the structure of the logical form may
be different from the parse tree

• How then can it be created while parsing?
Wff

S

NP VP

N NV

Eve loves Adam

Literal

Predicate Term Term

love Eve Adam

The predicate word “loves” is buried inside the VP

Compositionality

• One approach: make logical structure the
same as parse tree, by using lamda-
expressions (R. Montague 1973)

• Our approach: use additional Prolog
variables to move pieces of structure
around

Moving Subject Into the Predicate

sentence(Tokens, Rest, s(NP, VP), Wff) :-
nounphrase(Tokens, More, NP, Term),
verbphrase(More, Rest, VP, Term, Wff).

verbphrase(Tokens, Rest, tvp(Verb, NP),
Term1, [Predicate,Term1,Term2]) :-

verb(Tokens, More, Verb, Predicate),
nounphrase(More, Rest, NP, Term2).

Definite Clause Grammars

• All those “Tokens, Rest” variables make the
grammar hard to read

• Definite Clause Grammar notation adds
them automatically.

sentence(s(NP, VP), Wff) -->
nounphrase(NP, Term),
verbphrase(VP, Term, Wff).

Exercise

• Back to Prolog…
– consult(genesis_dcg).
– Try some examples:

• phrase(sentence(T,M),[Eve,gives,Adam,the,apple]).
– consult(toplevel).
– Try the read/eval loop (blank line or error to exit):

• nlp.
• > Eve gives Adam the apple
• > Eve loves the snake

Workshop
• In your groups, extend genesis_dcg.pl so

that it handles sentences that contain “and”
or “or” joining independent sentences:

• Adam loves Eve and Eve loves the snake
• compound_s(

s(np(n(adam)), tvp(v(loves),
np(n(eve)))),

c(and),
s(np(n(eve)), tvp(v(loves),

np(det(the),
n(snake)))))

• [and, [love,Adam, Eve], [love, Eve, satan]]

Conjoined Objects

verbphrase(tvp(Verb,
compound_np(NP1,C,NP2)), Term1,
[Operator, [Predicate,Term1,Term2],

[Predicate,Term1,Term3]]) -->
verb(Verb, Predicate),
nounphrase(NP1, Term2),
connective(C, Operator),
nounphrase(NP2, Term3).

Exercise

• Back to Prolog…
– consult(genesis_compound).
– nlp.
– > Eve loves Adam and the snake.
– > Adam and Eve eat the apple and the snake.
– ERROR
– CHANGE: verb(v(eats),eat) --> [eats | eat].

Referring Expression

• Determining the object being referred to by
a noun phrase can require taking into
account syntactic, semantic, and
pragmatic (contextual) information

• Pronouns are an obvious case:
– I put my quarter in the vending machine but it

was broken.
– I put my quarter in the vending machine but it

was bent.

Referring Expressions

• In truth, contextual information is needed
to determine the referent of any noun:
– Henry teaches P573.
– Henry became king in 1399 AD.
– When I got married, the minister was tipsy.

• Some applications can handle nouns by
defining predicates that search for the
object.

Example

Instead of:
noun(n(man),adam) --> [man].

Define:
noun(n(man),P) -->

[man], {male(P), in_focus(P)}.
male(adam).
male(cain).
in_focus(P) :- ordered list of most recently

mentioned objects

Disambiguation

• Reaction time experiments show the brain
disambiguates language on a word-by-
word basis, not by whole sentences or
phrases
– “The gardener found a bug in the petunias”

recognize MICROPHONE: fast
recognize INSECT: fast

recognize MICROPHONE: slow
recognize INSECT: fast

Disambiguation

• Reaction time experiments show the brain
disambiguates language on a word-by-
word basis, not by whole sentences or
phrases
– “The spy found a bug in the ceiling”

recognize MICROPHONE: fast
recognize INSECT: fast

recognize MICROPHONE: fast
recognize INSECT: slow

Practical Disambiguation

• The most successful approaches to
disambiguation for NLP use tables of word
trigram frequency
– {gardener, saw, bug[Noun,Insect]} 0.0002
– {spy, saw, bug[Noun,Insect]} 0.0000001

• Approach: use trigrams to tag each word
in sentence, then parse

What’s in a Tag?
• Understanding

– Tag = {part of speech, meaning}
– Main problem: limited amount of fully-tagged

data for creating trigram tables
• Parsing

– Tag = {part of speech}
– Much more data available

• Speech recognition
– No tag needed (just predict next word)
– Limitless amounts of data available

Garden-Path Sentences

• “Leading someone down the garden path”
= “Leading someone astray without them
being aware of it”

• Is this proper English?
The horse raced past the barn fell.

• Ordinary language understanding relies
upon our implicit knowledge of language

• Cases like these require conscious
thought

Assignment

• Either:
– Enrich genesis_compound.pl to handle more

kinds of statements
• OR

– Generalize genesis_parser.pl to handle a
paragraph of real-world text

• Work alone or in groups. Feel free to
share questions and ideas with the class
on csep573@cs.washington.edu

	parsing-english-in-prolog.pdf
	Introduction
	A formal grammar for English
	Writing a parser for this grammar in Prolog
	Sentences
	Comments
	Finding a more efficient algorithm

	Extending the grammar
	Summary

