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Outline

¢ Uncertainty
> Probability
> Syntax and Semantics

> Inference

> Independence and Bayes' Rule
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Uncertainty

Let action A; = leave for airport ¢ minutes before flight
Will A; get me there on time?

Problems:
1) partial observability (road state, other drivers' plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “Ass will get me there on time”
or 2) leads to conclusions that are too weak for decision making:
“Ags will get me there on time if there's no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time
but I'd have to stay overnight in the airport .. .)
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Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume Ass works unless contradicted by evidence
Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
Aos 03 get there on time
Sprinkler w99 WetGrass
WetGrass v+ 7 Rain
Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability
Given the available evidence,

Aoy will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)

AIMAZ2e Chapter 13 4



Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’'s own state of knowledge
e.g., P(Asgs|no reported accidents) = 0.06

These are not claims of some probabilistic tendency in the current situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:
e.g., P(Ays|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment status KB = a, not truth.)
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Making decisions under uncertainty

Suppose | believe the following:

P(Ass gets me there on time| ...
P(Agy gets me there on time| ...
P(Ajg9 gets me there on time| ...
P(A1440 gets me there on time| ...

Which action to choose?

— — ~— ~—

= 0.04

0.70
0.95

= 0.9999

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics

Begin with a set {)—the sample space
e.g., 6 possible rolls of a die.
w € () is a sample point/possible world /atomic event

A probability space or probability model is a sample space
with an assignment P(w) for every w € () s.t.

0<Plw) <1

2,Pw)=1
eg., P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6.

An event A is any subset of ()
P(A) = XguenyP(w)
E.g, P(dieroll <4)=1/6+1/6+1/6=1/2
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Random variables

A random variable is a function from sample points to some range, e.g., the
reals or Booleans

e.g., Odd(1) =true.

P induces a probability distribution for any r.v. X:
P(X =) = 2fpx(w) =2 P(W)

e.g., P(Odd=true) =1/64+1/6+1/6 =1/2
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Propositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B:
event ¢ = set of sample points where A(w) =true
event —a = set of sample points where A(w) = false
event a A b = points where A(w)=true and B(w)=true

Often in Al applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
e.g., A=true, B= false, or a N\ —b.
Proposition = disjunction of atomic events in which it is true
eg., (aVb)=(-aAb)V(aA-b)V(aAD)
= P(aVb)=P(-aAb)+ PlaA—-b)+ PlaAD)
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Why use probability?

The definitions imply that certain logically related events must have related
probabilities

Eg., PlaVb)=P(a)+ P(b) — P(aAD)

True

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.
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Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do | have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., T'emp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Prior probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity=true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather, Cavity) = a 4 X 2 matrix of values:

Weather = |sunny rain cloudy snow
Cavity=true [0.144 0.02 0.016 0.02
Clavity = false|0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint distribution
because every event is a sum of sample points
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Probability for continuous variables

Express distribution as a parameterized function of value:
P(X =x) = UJ[18,26](x) = uniform density between 18 and 26

|

0.1254

18 dx 26

Here P is a density; integrates to 1.
P(X =20.5) = 0.125 really means

lim P(20.5 < X <20.5 + dz)/dz = 0.125
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Gaussian density

P(x)

1

2o

6_(37_,“)2/202
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Conditional probability

Conditional or posterior probabilities
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all | know
NOT “if toothache then 80% chance of cavity"

(Notation for conditional distributions:
P (Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but

is not always wuseful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional probability

Definition of conditional probability:

P(a AD)
P(b)

P(alb) = if P(b) # 0

Product rule gives an alternative formulation:

P(a Ab) = P(alb)P(b) = p(bla)P(a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4 x 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(Xy,....X,) =P(Xy, ..., X0 1) P(Xu| Xy, .., Xn1)
=P(Xy,..., X—2) P(Xp,| X4, ..., X)) P(X,| X4, ..., X0ot)

= II]_ \ P(X;|X4,..., X;1)
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Inference by enumeration

Start with the joint distribution:
toothache — toothache

catch| — catch] catch| — catch

cavity | .108 | .012 .072| .008
- cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(qb) — Zw:w|=¢P<w)
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Inference by enumeration

Start with the joint distribution:
toothache

— toothache

catch| — catch] catch| — catch
cavity | .108| .012 .072| .008
- cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢> — Zw:wlquP(w)
P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:
toothache — toothache

catch| — catch] catch| — catch
cavity | .108| .012 | .072| .008
- cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢> — Zw:wlquP(w)
P(cavityVtoothache) = 0.1084-0.01240.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:
toothache

— toothache

catch| — catch] catch| — catch

cavity | .108

= cavity || .016 144 | 576

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
0.016 + 0.064

P(—cavity|toothache) =

=04
0.108 + 0.012 + 0.016 + 0.064
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Normalization

toothache - toothache

catch| — catch] catch| — catch
cavity |1.108].012] [ .072] .008
- cavity ||.016/[|.064] [ .144] 576

Denominator can be viewed as a normalization constant «

P (Cavity|toothache) = a P(Cavity, toothache)

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Cavity is a random variable!

P(cavity) is the same as
P(Cavity=true)

P(~cavity) is the same as
P(Cavity=false)

P(Cauvity) is the distribution over all
values of Cavity, namely the pair
< P(cavity), P(~cavity) >

a [P (Cavity, toothache, catch) + P(Cavity, toothache, —catch)|
o [(0.108,0.016) + (0.012, 0.064)]
a (0.12,0.08) = (0.6, 0.4)
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Text Box
Cavity is a random variable!

P(cavity) is the same as
    P(Cavity=true)
P(~cavity) is the same as 
    P(Cavity=false)

P(Cavity) is the distribution over all values of Cavity, namely the pair
    < P(cavity), P(~cavity) >


Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbe H =X — Y — E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|[E=e)=aP(Y,E=¢) = aX,P(Y,E=¢,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries??7
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Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(A)P(B)

Cavity
decomposesinto \Toothache Catch

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity)P (W eather)

Cavity
Toothache Catch
Weather

32 entries reduced to 12; for n independent biased coins, 2" — n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend
on whether | have a toothache:

(1) P(catchl|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catchl|toothache,~cavity) = P(catch|—cavity)

Clatch is conditionally independent of T'oothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ Rule

Product rule P(a A b) = P(alb)P(b) = P(bla)P(a)

P P
= Bayes’ rule P(a|b) = (bllggb) ()
or in distribution form
P(X|Y)P(Y)

P(Y|X) =

px]  ~ CPXIP(Y)

Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

E.g., let M be meningitis, S be stiff neck:

P(slm)P(m) 0.8 x 0.0001
P(s) B 0.1

P(Cause|Ef fect) =

P(m|s) = = (0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P (Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Effect,) = P(Cause)ll,P(Ef fect;|Cause)

j t A B W

Total number of parameters is linear in n
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event
Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools
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BAYESIAN NETWORKS

AIMA2E CHAPTER 14.1-3
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Outline

¢ Syntax
{> Semantics

> Parameterized distributions
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ~ “directly influences”)
a conditional distribution for each node given its parents:

P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X, for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Toothache @

Weather is independent of the other variables

Toothache and Clatch are conditionally independent given C'avity
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Farthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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Example contd.

P(B)
Burglary 001 Earthquake 002

P(A|B,E)

- |

M —T | Mm

95

94
29

.001

-

P(E)

P(JIA) A [P(M]A)
90 @ T .70
.05 F| .01
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Compactness

A CPT for Boolean X; with k Boolean parents has

2% rows for the combinations of parent values @

Each row requires one number p for X, =true }ZA‘I
(the number for X; = false is just 1 — p) @ @

If each variable has no more than £ parents,
the complete network requires O(n - 2%) numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 +4 + 2+ 2=10 numbers (vs. 2> — 1 = 31)
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Global semantics

Global semantics defines the full joint distribution

as the product of the local conditional distributions:

P(Xi,...,X,) =II]_ P(X;|Parents(X;))

eg., PGAMAaA—-bA—e)

@ _®
g ®

AIMAZ2e Chapter 14.1-3 8



Global semantics

“Global” semantics defines the full joint distribution

as the product of the local conditional distributions:

P(X,,...,X,) = 1I'_ P(X;|Parents(X;))
eg., PGAMAaA—-bA—e)
= P(jla)P(m|a)P(a|-b, ~e)P(—~b)P(—e)
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics < global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X;,..., X,
2. Fori =1ton

add X, to the network

select parents from X, ..., X,;_; such that

P(XAPCLT@HZ%S(XJ) — P(XZ‘Xl, Cee Xz'—l)
This choice of parents guarantees the global semantics:

P(Xy,....X,) = II'_ P(X;| X1, ..., X;_1) (chain rule)
= [I7_,P(X;|Parents(X;)) (by construction)

AIMA2e Chapter 14.1-3
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|.J)? P(A]J, M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)? No
P(B|A, J, M) = P(B|A)?

P(B|A, J, M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Earthquake
7 No

P(J|M) = P(J):

P(A|J,M) = P(A|J)? P(A|J,M)= P(A)? No
P(BJA,J,M) = P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B, A, J, M) = P(E|A)?

P(E|B, A, J, M) = P(E|A, B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary
Earthquake

P(J|M)= P(J)? No

P(A|J,M) = P(A|J)? P(A|J,M)= P(A)? No
P(BJA,J,M) = P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B, A, J, M) = P(E|A)? No

P(E|B, A, J, M) = P(E|A, B)? Yes
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Example contd.

Burglary
Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 + 2+ 4 =13 numbers needed
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Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
ey
battery battery fuel line starter
meter flat blocked broken

oo lo D




Example: Car insurance

SocioEcon

Age

ehicleY ear
ST/ < \
rivingHist \}@ -\\

' u
Ruggedness Accident "
'l‘\
v
>/ =

Cushionin f =
> Other Cost @




Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV US NV Mezxican

E.g., numerical relationships among continuous variables

0Level
ot

= inflow + precipitation - outflow - evaporation

AIMA2e Chapter 14.1-3
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents U; ... U} include all causes (can add leak node)

2) Independent failure probability ¢; for each cause alone

= P(X‘Ul...Uj,—l j+1---ﬁUk> :1_1_[?:1%'

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02 =0.2 x 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents

AIMA2e Chapter 14.1-3
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Hybrid (discrete

continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

S| G

Buys?

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)

AIMA2e Chapter 14.1-3
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Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost=c|Harvest =h, Subsidy? = true)
= N(ath + b, 04)(c)

- Jt;%exp (_; (C — (a(t: 4 bt>)2)

Mean C'ost varies linearly with Harwvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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Continuous child variables

AN\
' AN
P(Cost|Haryest, Subsidy?=true) 4N
s A
0.5} AN
05| \\§§§§§§§§§§§
. B N NN
10

5 Harvest

5
Cost 10 0

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete4-continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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Discrete variable w/ continuous parents

Probability of Buys? given C'ost should be a “soft” threshold:
1 . . . . .

0.8 r
o
1
2
O 0.6 r
5
s
|
2
m
[ang

0.2

O 1 1 1 1 1
0 2 4 6 8 10 12
Cost c

Probit distribution uses integral of Gaussian:
O(z) =/_o *N(0,1)(z)dx
P(Buys? =true | Cost=c) = ®((—c+ u)/o)
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Why the probit?

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

AN
& @ @

Buys? I

AIMA2e Chapter 14.1-3 27



Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables =- parameterized distributions (e.g., linear Gaussian)
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INFERENCE IN BAYESIAN NETWORKS

AIMA2E CHAPTER 14.4-5
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Outline

> Exact inference by enumeration
> Exact inference by variable elimination
> Approximate inference by stochastic simulation

> Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(X;|E =e)
e.g., P(NoGas|Gauge =empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=¢) = P(X;|E=¢)P(X;|X;,E=¢e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) ©

= P(B,j,m)/P(j,m) ‘\}:Aj\/@)
— @P(Bajam)

= oX.X.P(B,e,a,j,m) g ©

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

= a2, 2,P(B)P(e)P(a|B, e)P(jla)P(m|a)

= aP(B)X.P(e)2,P(a| B, e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time
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Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(mla) for each value of ¢

P(j[a) P(j| —a) P(j|2) P(j| —a)
.90 .05 .90 .05
O
P(m|a) P(m|—a) P(m|a) P(m|—=a)
.70 .01 .70 .01

P(alb,e)

P(—alb,e)
.05

P(alb,—€)

P(—albe)
.06

O

AIMAZ2e Chapter 14.4-5 6



Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= aP(B) 2. P(e) 2, P(a| B, e) P(jla) P(m|a)
_ aP(B)S. PSP (alB. )Pl fula)
= aP(B)x.P(e)2,P(a|B,e)f;(a)fula)
= aP(B)2.P(e)2qfa(a,b,e)fs(a)fu(a)
= aP(B)x.P(e)fi,1,(b,e) (sum out A)
= aP(B)fii71(b) (sum out F)
= a.fp(b) X frasu(b)

AIMAZ2e Chapter 14.4-5 7
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
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B I 7 M
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j, m)
—aP(B) %, P(e) ¥, Pla|B,e) Pljla) Plmla)
= aP(B)2.P(e)2,P(a|B,e)P(jla) fu(a)
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= aP(B) 2. P(e) 2, P(a| B, €) P(j|a) P(m|a)
= aP(B)2.P(e)2.P(a| B, e) P(jla) fu(a)
- (B)Z€P<€)Za (a|B,e)fs(a)fm(a)
= aP(B)2.P(e)Lafala,b,e) fs(a) fula)
= (B)ZGP<6) faru(b,e) (sum out A)

cuP (sum out F£)

= o(B(b) X franm(b vector

P(m.j|b)P(b)
P(m.j|~b)P(~b)

Note use of normalization constant instead of calculating
denominator in Bayes law
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

YpfiX e X fy=fix o X fi 2y fin X e X fro= fux o X fix fx
assuming f1,..., f; do not depend on X

Pointwise product of factors f; and fs:

filzy, ooz yn, o ye) X fa(Yt, - ooy Yky 215 - - -5 20)
— f(xh"'7xj7y17"'7yk7217"'7zl)
E.g., fi(a,b) x fa(b,c) = f(a,b,c)

AIMAZ2e Chapter 14.4-5 8



Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X7,..., X))

factors < []; vars < REVERSE(VARS[bn])
for each var in vars do

factors < [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors < SumM-OuT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

AIMA2e Chapter 14.4-5




Irrelevant variables

Consider the query P(JohnCalls|Burglary = true) o
P(J|b) = aP(b) ;P(e) ZajP(a\b, e)P(J|a) %P(m\a) ﬁ
Sum over m is identically 1; M is irrelevant to the query @ @

Thm 1: Y is irrelevant unless Y € Ancestors({ X} UE)

Here, X = JohnCalls, E={Burglary}, and
Ancestors({ X } UE) = { Alarm, Farthquake}

so M is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

AIMAZ2e Chapter 14.4-5 10



Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

0.5 0.5 0.5 0.5

1. AvBv C
2. Cv Dv A
3. Bv Cv-D
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S A
2) Compute an approximate posterior probability P

3) Show this converges to the true probability P
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

AIMA2e Chapter 14.4-5 13



Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X,..., X))

X <— an event with n elements
for: = 1tondo

x; < a random sample from P(X; | Parents(X;))
return x

AIMA2e Chapter 14.4-5 14




Example

C |P(SIC)
T| .10
F| .50

P(C)

.90

S R[P(W|S,R)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20

AIMA2e Chapter 14.4-5

15



Example

C |P(SIC)
T| .10
F| .50

P(C)

.90

S R[P(W|S,R)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20

AIMA2e Chapter 14.4-5

16



Example

C |P(SIC)
T| 10
F| .50

P(C)

.90

S R[P(W|S,R)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20

AIMA2e Chapter 14.4-5

17



Example

C |P(SIC)
T| 10
F| .50

P(C)

.90

S R[P(W|S,R)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20

AIMA2e Chapter 14.4-5

18



Example

C |P(SIC)
T| 10
F| .50

P(C)

.90

S R[P(W|S,R)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20

AIMA2e Chapter 14.4-5

19



Example

C [P(SIC)
T | .10
F| .50
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Example

C |P(SIC)
T 1] .10
F| .50

P(C)

.90

C |P(R|IC)
T | .80
F| .20

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| .01
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = II[_  P(z;|Parents(X;)) = P(z; ... x,)
I.e., the true prior probability

E.g., Sps(t, f,t,t) =0.5x0.9x 0.8 % 0.9=0.324 = P(t, f,t,1)
Let Npg(zy...x,) be the number of samples generated for event 1, ..., z,

Then we have

lim P(zy,...,z,) = lim Npg(ay,...,x,)/N

N—o0 N—o0
= Spg(:l?l, ce ,xn)
= P(zy...1zp)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(z1,...,x,) ~ Pl ... x,)

AIMA2e Chapter 14.4-5 22



Rejection sampling

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to N do
X <~ PRIOR-SAMPLE(bn)
if x is consistent with e then
NJz] <— N[2]+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain = false.

A

P(Rain|Sprinkler =true) = NORMALIZE((8,19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure

AIMA2e Chapter 14.4-5
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Exercise: Inference by Stochastic
Sampling

* Write down
— last 4 digits of your SS#
— last 4 digits of your home phone number
— your favorite 4 digit lucky number

» Use each digit as a random biased coin
digit < Prob. is "yes”
P(foo)=0.5 then foo=true for 0, 1, 2, 3, 4
P(foo)=0.3 then foo=true for O, 1, 2



P(s) P(—s)

4 .6
Smoklng]
P(h) P(ﬁh) / P() P()
s |4 Heart Lung 7 3
—s | .3 disease disease 9 3
Breathing P) — P(=b)
difficulties | 9 1
h,—l 5 5
Estimate: —h—l | 2 S

P(H| S = true, B = true)

by rejection sampling



Analysis of rejection sampling

P(X|e) = aNpg(X,e) (algorithm defn.)
= Nps(X,e)/Nps(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X]|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!

AIMA2e Chapter 14.4-5
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Likelihood weighting

|dea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to N do

X, W4 WEIGHTED-SAMPLE( bn)

W z] < W{z] + w where z is the value of X in x
return NORMALIZE(W|[X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

X < an event with n elements; w<+1
for :=1ton do
if X; has a value z; in e
then w+ w x P(X;= z; | Parents(X;))
else z; < a random sample from P(X; | Parents(X;))
return x, w

AIMAZ2e Chapter 14.4-5 25



Likelihood weighting example

C |P(SIC)
T .10
F| .50

P(C)
50

S R

T T 99
T F 90
F T 90
F F 01

C |P(RIC)
T1| .80
F| .20

AIMA2e Chapter 14.4-5
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Likelihood weighting example

C |P(SIC)
T | .10
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50

S R
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Likelihood weighting example

P(C)
50

T C |PRIC)
1.'1"""11'.:?‘3N"-"" R
M N\ i

S R

T T 99
T F 90
F T 90
F F 01

w=1.0x0.1
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Likelihood weighting example
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Likelihood weighting example

C |P(SIC)
T | .10
F| .50

w=1.0x0.1x0.99 =0.099

P(C)

.20

P(RIC)

.80
20

99
90
90
01

AIMA2e Chapter 14.4-5
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Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = II._, P(z]| Parents(Z;))
Note: pays attention to evidence in ancestors only
= somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z,e) = II;"  P(e;| Parents(E;))

Weighted sampling probability is
Sws(z,e)w(z,e)
= HizlP(zﬂParents(Zz-)) III"  P(e;| Parents(E;))
= P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N|X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to N do
N[z] - N|z]| 4+ 1 where z is the value of X in x
for each Z; in Z do
sample the value of Z; in x from P(Z;|M B(Z;)) given the values of
MB(Z;) inx
return NORMALIZE(N[X])

Can also choose a variable to sample at random each time

AIMA2e Chapter 14.4-5
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The Markov chain

= true, there are four states:

With Sprinkler =true, WetGrass

Wander about for a while, average what you see

35
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MCMC example contd.

Estimate P(Rain|Sprinkler =true, WetGrass = true)

Sample C'loudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain =true, 69 have Rain = false

AN

P(Rain|Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31,0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Summary

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC:
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables
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