TEMPORAL PROBABILITY MODELS

CHAPTER 15

Chapter 15

Outline

S DSOS SO

Time and uncertainty

Inference: filtering, prediction, smoothing
Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

Particle filtering

Chapter 15

Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X; = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X i1,..., X1, X,

Chapter 15

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X.;_;

First-order Markov process: P(X;|Xg; 1) = P(X;|X;_ 1)
Second-order Markov process: P(X;| X, 1) = P(X;|X; 9, X4 1)

mvaser —C D~ ED—~CO—~ED—E2
—_— B N

Sensor Markov assumption: P(E;| X, Eo.; 1) = P(E;|X})

Stationary process: transition model P(X;|X; 1) and
sensor model P(E;|X;) fixed for all ¢

Chapter 15 4

Example

Ri_1| P(Ry)

0.7
0.3

— —+

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

Chapter 15 5

Inference tasks

Filtering: P(X;|e1.)
belief state—input to the decision process of a rational agent

Prediction: P (X, x|e1) for k& > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xj|eq) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(xi.|e1.)
speech recognition, decoding with a noisy channel

Chapter 15

6

Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1‘91:t+1) = f(et+17 P(Xt|el:t))

P(X¢iilerst1) = P(Xip1lers, e1)
= OéP<et+1‘Xt—l-17 el:t)P<Xt+1|elit)
= QP<et_|_1‘Xt+1)P(Xt—{—1|ellt)

|.e., prediction + estimation. Prediction by summing out X;:

P(Xi1leni1) = aP(ep1]|X1) 2%, P (X 1]xe, e1.4) P(x¢]er)
= aP(e;1]Xi11) x, P (Xpp1]x:) P(xs]ery)

fl:H—l = FORWARD(th, eH_l) Where fl:t = P(Xt|elzt)
Time and space constant (independent of t)

Chapter 15

Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.%!18 0.2;83
False 0.500 0.182 0.117

Umbrella, Umbrella,

Chapter 15 8

Smoothing

Divide evidence ey into e1.;, €11.4:

P(Xilei) = P(Xy|eir, €rt1:t)
= aP(Xj|e1.r)P(eri1:4| Xk, e1:x)
= oP(Xlerr)P(epr1:4| Xi)
= afpbri1y

Backward message computed by a backwards recursion:
P(epi1:41Xs) = 2y Plerre| X, Xip1) P (xp41|Xp)

Zxk,H (€rt1:4|Xp41) P (Xp11|1X3)
= Dixypr P11 Xk 11) Plera|Xps1) P (Xp 11| X5)

Chapter 15 9

Chapter 15 10

Smoothing example

0.500
0.500

True 0.500 0.;18
False 0.500 0.182
O.!S3
0.117

{

0.690
0.410

0.627
0.373

O.J83

0.117
0.8*83
0.117

{

1.000
1.000

forward

smoothed

backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

Chapter 15

11

Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
= most likely path to some x; plus one more step

)gl&g{(t P<X17 ey Xty Xt—l—l‘el:t—H)
= P(e;1|X41) ng(atx (P<Xt+1|xt) X{F}%_l P(x1,..., %1, Xt\elzt))

|dentical to filtering, except f;.; replaced by

mi.; = XlI.n..?gt(_l P(Xb ceey Xt 1, Xt‘el:t)7

l.e., my,(i) gives the probability of the most likely path to state 1.
Update has sum replaced by max, giving the Viterbi algorithm:

mi.t41 = P<et+1‘Xt+1) n}(agx (P(XtJrl‘Xt)ml:t)

Chapter 15

12

Viterbi example

state
space
paths

umbrella

most
likely
paths

<

<

Rain, Rain,
false false
.8182 5155
.1818 .0491
m 1:1 m 1:2

1:3

Raing Rain, Raing
false false false
false

.0361 0334 v 0210
1237 0173 A 0024
m m m

1:4 1.5

Chapter 15

13

Viterbi example

Rain, Rain, Rain, Rain,
state i
space
paths

false false false false
umbrella false
most
likely

paths

Raing

Chapter 15

13

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

Viterbi example

Rain, Rain, Rain, Rain, Raing

state [
space
paths
false false false false false
umbrella false
most
likely
paths

Viterbi == Shortest path where arcs are labeled with the negative log probability of
the transition!

Higher probability means negative log is a SMALLER positive number

Path length = sum of logs = product of probabilities

Chapter 15

13

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

kautz
Rectangle

kautz
Text Box
Viterbi == Shortest path where arcs are labeled with the negative log probability of the transition!
 Higher probability means negative log is a SMALLER positive number
 Path length = sum of logs = product of probabilities

Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X is {1,...,S}

Transition matrix T;; = P(X,=j|X,_1=1), e.g, (0'7 0'3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;| X; =1)

e.g., with Uy =true, O = (0(')9 002)

Forward and backward messages as column vectors:

f1.4401 = 040t+1TTf1:t
b1t = TOp11bgyo:

Forward-backward algorithm needs time O(S%t) and space O(St)

Chapter 15 14

Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X, Y. Z XY, Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

-G
>@_
)

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15 25

Updating Gaussian distributions

Prediction step: if P(X;|e1;) is Gaussian, then prediction
P(Xilery) = /xt P (X 11]x:) P(x¢]€1:) dxy

is Gaussian. If P(X;.|e;.;) is Gaussian, then the updated distribution
P(Xyi1ler+1) = aP(ep| X)) P(Xyyi|ers)

is Gaussian

Hence P(X;|e1;) is multivariate Gaussian N (p,, 33;) for all ¢

General (nonlinear, non-Gaussian) posterior grows unboundedly as ¢ — oo

Chapter 15 26

General Kalman update

Transition and sensor models:

P(x¢41|xi) = N(Fxy, 3;)(X¢11)
P(z|x;) = N(Hxy, 3,)(z)

F' is the matrix for the transition; X2, the transition noise covariance
H is the matrix for the sensors; 2. the sensor noise covariance

Filter computes the following update:

P = Fpy+ K (2 — HF py)
S = I-Ky)(FEF +5,)

where K, = (FX,F' +3,)H' (H(FX,F' +Z,)H' +X,)!
is the Kalman gain matrix

>, and K, are independent of observation sequence, so compute offline

Chapter 15

28

Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

P(Ry) Ry | P(Ry)

Battery

—

Chapter 15 32

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; N

\ N /7 \ /

N7

Lol

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2% = 160 parameters, HMM has 2% x 220 ~ 10'?

Chapter 15

33

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

T
5 E(Battery|.. 5555005555...
A S s
4 r E(Battery]...5555000000...j
x L _
g 3
£ o]
L
Ll P(BM Broken|...5555000000..)
0 -8 -&8--B-B-B--B-8 = x%%%%%%%%e
P(BMBroken)|...5555005555..))
-1 1 1 1 1
15 20 25 30
Time step

Chapter 15 34

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

1A R 2 G 1A R R R
T T mrkard mrkar

28
T 0.7
f] o3 ol

. nl
o of 2
PN el
|
X
7|

0.7). 1 .).
prm— pm— . il I P o5 | g] o5 Ly o5 gy [03 yozma L1103 gummay
Raing Raing Rain, Rain, Raing Rain,, Raing 3 == ! Raing v== ! Raing -y
Smmrl L Semzl L
R [P0 R | PUD R [P0 R | PUD R [PUD) 1R RUD 1R CRUD
T | o9 T oo T | o9 T oo T | o9 78 508
f 02 f 02 f 02 f 02 f 02 L0224 N .02 4
Umbrella, Umbrella, Umbrellag Umbrella, Umbrellag " Umbrellag™y ¢« Umbrella; "

~ ~

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"™!), update cost O(d""?)
(cf. HMM update cost O(d*"))

Chapter 15 35

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain; Raing,g Rain; 4 Rain; 4

true o000 00 eoo @
o000 00 oo o ®

false (] L1 o0 000
(] o0 o0 000

(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15

37

Particle filtering contd.

Assume consistent at time ¢: N(x;|e1.;)/N = P(x;|e1:)
Propagate forward: populations of x;, are

N(x¢r1lers) = 2ix, P(Xer1|xe) N (x¢|er.r)
Weight samples by their likelihood for e;_1:

W (xtr1l€r+1) = Plepr[Xer1) N (Xet1]er)

Resample to obtain populations proportional to IV:
N(xir1len1)/N = aW (xi1ler1) = aP(eg X)) N (Xpv1€1:)
= aP(ep1[xp41) 2x, P (Xer1[x0) N (xi|ery)
— a/P(et+1‘Xt+1)thP(Xt+1‘Xt>P(Xt‘el:t)

= P(x¢y1l€1:441)

Chapter 15

38

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP(X;|X; 1)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n?) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15 40

