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Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X; = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; step size depends on problem

Notation: X, = X, X i1,..., X1, X,
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X.;_;

First-order Markov process: P(X;|Xg; 1) = P(X;|X;_ 1)
Second-order Markov process: P(X;| X, 1) = P(X;|X; 9, X4 1)

mvaser —C D~ ED—~CO—~ED—E2
—_— B N

Sensor Markov assumption: P(E;| X, Eo.; 1) = P(E;|X})

Stationary process: transition model P(X;|X; 1) and
sensor model P(E;|X;) fixed for all ¢
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Example

Ri_1| P(Ry)

0.7
0.3

— —+

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp,;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,
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Inference tasks

Filtering: P(X;|e1.)
belief state—input to the decision process of a rational agent

Prediction: P (X, x|e1) for k& > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xj|eq) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(xi.|e1.)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1‘91:t+1) = f(et+17 P(Xt|el:t))

P(X¢iilerst1) = P(Xip1lers, e1)
= OéP<et+1‘Xt—l-17 el:t)P<Xt+1|elit)
= QP<et_|_1‘Xt+1)P(Xt—{—1|ellt)

|.e., prediction + estimation. Prediction by summing out X;:

P(Xi1leni1) = aP(ep1]|X1) 2%, P (X 1]xe, e1.4) P(x¢]er)
= aP(e;1]Xi11) x, P (Xpp1]x:) P(xs]ery)

fl:H—l = FORWARD(th, eH_l) Where fl:t = P(Xt|elzt)
Time and space constant (independent of t)
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Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.%!18 0.2;83
False 0.500 0.182 0.117

Umbrella, Umbrella,
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Smoothing

Divide evidence ey into e1.;, €11.4:

P(Xilei) = P(Xy|eir, €rt1:t)
= aP(Xj|e1.r)P(eri1:4| Xk, e1:x)
= oP(Xlerr)P(epr1:4| Xi)
= afpbri1y

Backward message computed by a backwards recursion:
P(epi1:41Xs) = 2y Plerre| X, Xip1) P (xp41|Xp)

Zxk,H (€rt1:4|Xp41) P (Xp11|1X3)
= Dixypr P11 Xk 11) Plera|Xps1) P (Xp 11| X5)
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Smoothing example

0.500
0.500

True 0.500 0.;18
False 0.500 0.182
O.!S3
0.117

{

0.690
0.410

0.627
0.373

O.J83

0.117
0.8*83
0.117

{

1.000
1.000

forward

smoothed

backward

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])
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Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
= most likely path to some x; plus one more step

)gl&g{(t P<X17 ey Xty Xt—l—l‘el:t—H)
= P(e;1|X41) ng(atx (P<Xt+1|xt) X{F}%_l P(x1,..., %1, Xt\elzt))

|dentical to filtering, except f;.; replaced by

mi.; = XlI.n..?gt(_l P(Xb ceey Xt 1, Xt‘el:t)7

l.e., my,(i) gives the probability of the most likely path to state 1.
Update has sum replaced by max, giving the Viterbi algorithm:

mi.t41 = P<et+1‘Xt+1) n}(agx (P(XtJrl‘Xt)ml:t)
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Viterbi example

state
space
paths

umbrella

most
likely
paths

<

<

Rain, Rain,
false false
.8182 5155
.1818 .0491
m 1:1 m 1:2

1:3

Raing Rain, Raing
false false false
false

.0361 0334 v 0210
1237 0173 A 0024
m m m

1:4 1.5
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Viterbi example

Rain, Rain, Rain, Rain,
state i
space
paths

false false false false
umbrella false
most
likely

paths

Raing
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Viterbi example

Rain, Rain, Rain, Rain, Raing

state [
space
paths
false false false false false
umbrella false
most
likely
paths

Viterbi == Shortest path where arcs are labeled with the negative log probability of
the transition!

Higher probability means negative log is a SMALLER positive number

Path length = sum of logs = product of probabilities
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Viterbi == Shortest path where arcs are labeled with the negative log probability of the transition!
       Higher probability means negative log is a SMALLER positive number
       Path length = sum of logs = product of probabilities


Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X is {1,...,S}

Transition matrix T;; = P(X,=j|X,_1=1), e.g, (0'7 0'3)

0.3 0.7

Sensor matrix O, for each time step, diagonal elements P(e;| X; =1)

e.g., with Uy =true, O = (0(')9 002)

Forward and backward messages as column vectors:

f1.4401 = 040t+1TTf1:t
b1t = TOp11bgyo:

Forward-backward algorithm needs time O(S%t) and space O(St)
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Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X, Y. Z XY, Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

-G
>@_
)

Gaussian prior, linear Gaussian transition model and sensor model
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Updating Gaussian distributions

Prediction step: if P(X;|e1;) is Gaussian, then prediction
P(Xilery) = /xt P (X 11]x:) P(x¢]€1:) dxy

is Gaussian. If P(X;.|e;.;) is Gaussian, then the updated distribution
P(Xyi1ler+1) = aP(ep| X)) P(Xyyi|ers)

is Gaussian

Hence P(X;|e1;) is multivariate Gaussian N (p,, 33;) for all ¢

General (nonlinear, non-Gaussian) posterior grows unboundedly as ¢ — oo

Chapter 15 26



General Kalman update

Transition and sensor models:

P(x¢41|xi) = N(Fxy, 3;)(X¢11)
P(z|x;) = N(Hxy, 3,)(z)

F' is the matrix for the transition; X2, the transition noise covariance
H is the matrix for the sensors; 2. the sensor noise covariance

Filter computes the following update:

P = Fpy+ K (2 — HF py)
S = I-Ky)(FEF +5,)

where K, = (FX,F' +3,)H' (H(FX,F' +Z,)H' +X,)!
is the Kalman gain matrix

>, and K, are independent of observation sequence, so compute offline
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Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

P(Ry) Ry | P(Ry)

Battery

—
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; N

\ N /7 \ /

N7

Lol

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2% = 160 parameters, HMM has 2% x 220 ~ 10'?
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DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

T
5 E(Battery|.. 5555005555...
A S s
4 r E(Battery]...5555000000...j
x L _
g 3
£ o ]
L
Ll P(BM Broken|...5555000000..)
0 -8 -&8--B-B-B--B-8 = x%%%%%%%%e
P(BMBroken)|...5555005555..))
-1 1 1 1 1
15 20 25 30
Time step
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm
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Problem: inference cost for each update grows with ¢

Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"™!), update cost O(d""?)
(cf. HMM update cost O(d*"))
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Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain; Raing,g Rain; 4 Rain; 4

true o000 00 eoo @
o000 00 oo o ®

false (] L1 o0 000
(] o0 o0 000

(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space
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Particle filtering contd.

Assume consistent at time ¢: N(x;|e1.;)/N = P(x;|e1:)
Propagate forward: populations of x;, are

N(x¢r1lers) = 2ix, P(Xer1|xe) N (x¢|er.r)
Weight samples by their likelihood for e;_1:

W (xtr1l€r+1) = Plepr[Xer1) N (Xet1]er)

Resample to obtain populations proportional to IV:
N(xir1len1)/N = aW (xi1ler1) = aP(eg X)) N (Xpv1€1:)
= aP(ep1[xp41) 2x, P (Xer1[x0) N (xi|ery)
— a/P(et+1‘Xt+1)thP(Xt+1‘Xt>P(Xt‘el:t)

= P(x¢y1l€1:441)
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP(X;|X; 1)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n?) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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