Inference in Bayesian networks

Chapter 14.4-5

Chapter 14.4-5

Outline

- \Diamond Exact inference by enumeration
- \Diamond Exact inference by variable elimination
- \Diamond Approximate inference by stochastic simulation
- \Diamond Approximate inference by Markov chain Monte Carlo

Inference tasks

probabilistic inference required for P(outcome|action, evidence)

Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

 $= \alpha \mathbf{P}(B, j, m)$ $= \alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)$ $= \mathbf{P}(B, j, m)/P(j, m)$ $\mathbf{P}(B|j,m)$

Rewrite full joint entries using product of CPT entries:

 $\begin{aligned} &\mathbf{P}(B|j,m) \\ &= \alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) P(m|a) \end{aligned}$

Recursive depth-first enumeration: ${\cal O}(n)$ space, ${\cal O}(d^n)$ time

Enumeration algorithm

function Enumeration-Ask(X, e, bn) returns a distribution over X

inputs: X,

 $X_{
m c}$ the query variable e, observed values for variables ${f E}$

 bn , a Bayesian network with variables $\{X\} \cup \mathbf{E} \cup \mathbf{Y}$

 $\mathbf{Q}(X) \leftarrow \mathbf{a}$ distribution over X_i initially empty for each value x_i of X do extend e with value x_i for X

 $\mathbf{Q}(x_i)$ \leftarrow Enumerate-All(Vars[bn], e)

return Normalize($\mathbf{Q}(X)$)

function ENUMERATE-ALL(vars, e) returns a real number if EMPTY?(vars) then return 1.0

First(vars)

if Y has value y in e

then return $P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), e)}$ else return $\Sigma_y \ P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), e}_y)$ where \mathbf{e}_y is e extended with Y = y

Chapter 14.4-5

Simple queries: compute posterior marginal $P(X_i|\mathbf{E}=\mathbf{e})$

 $\textbf{e.g.},\ P(NoGas|Gauge=empty,Lights=on,Starts=false)$

Conjunctive queries: $P(X_i, X_j | \mathbf{E} = \mathbf{e}) = P(X_i | \mathbf{E} = \mathbf{e})P(X_j | X_i, \mathbf{E} = \mathbf{e})$

Optimal decisions: decision networks include utility information;

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Inference by variable elimination

storing intermediate results (factors) to avoid recomputation Variable elimination: carry out summations right-to-left,

```
\mathbf{P}(B|j,m)
= \alpha P(B) \sum_{a} P(e) \sum_{a} P(a|B, e) P(j|a) f_{M}(a)
= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) f_{J}(a) f_{M}(a)
= \alpha P(B) \sum_{e} P(e) \sum_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a)
= \alpha P(B) \sum_{e} P(e) f_{AJM}(b, e) (sum out A)
= \alpha P(B) f_{E\bar{A}JM}(b) (sum out E)
                                                                                                                                                                                                                                                                                                                                      = \alpha \underline{\mathbf{P}(B)} \sum_{e} \underline{P(e)} \sum_{a} \underline{\mathbf{P}(a|B,e)} \underline{P(j|a)} \underline{P(m|a)}
                                                                                                                                                                                                                                                   \sum_{a} \mathbf{P}(a|B,e) P(j|a) f_{\mathcal{M}}(a)
```

Chapter 14.4-5

Variable elimination: Basic operations

Summing out a variable from a product of factors: add up submatrices in pointwise product of remaining factors move any constant factors outside the summation

$$\sum_{x} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_{x} f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$$

assuming f_1,\ldots,f_i do not depend on X

Pointwise product of factors f_1 and f_2 : $= f(x_1, \dots, x_j, y_1, \dots, y_k, z_1, \dots, z_l)$ g., $f_1(a,b) \times f_2(b,c) = f(a,b,c)$ $J_1(x_1,$ $(x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l)$

Chapter 14.4-5

Variable elimination algorithm

```
function ELIMINATION-ASK (X, e, bn) returns a distribution over X
                                 for each var in vars do
factors — [MAKE-FACTOR(var, e)]factors]
if var is a hidden variable then factors — SUM-OUT(var.factors)
                                                                                                                                                                                                                                                                                                                   inputs: X, the query variable
return Normalize(Pointwise-Product(factors))
                                                                                                                                                                          -[]; vars \leftarrow Reverse(Vars[bn])
                                                                                                                                                                                                                                  bn, a belief network specifying joint distribution \mathbf{P}(X_1,\dots,X_n)
                                                                                                                                                                                                                                                                              e, evidence specified as an event
```

lrrelevant variables

Consider the query P(JohnCalls|Burglary = true)

$$P(J|b) = \alpha P(b) \mathop{\textstyle \sum}_{e} P(e) \mathop{\textstyle \sum}_{a} P(a|b,e) P(J|a) \mathop{\textstyle \sum}_{m} P(m|a)$$

Sum over m is identically 1; M is ${\bf irrelevant}$ to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here,
$$X = JohnCalls$$
, $\mathbf{E} = \{Burglary\}$, and
$$Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$$
 so $MaryCalls$ is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Chapter 14.4-5

<u>lrrelevant variables contd</u>

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is $\underline{\mathsf{m}\text{-}\mathsf{separated}}$ from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by ${f E}$

For P(JohnCalls|Alarm=true), both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference NP-hard
- equivalent to counting 3SAT models #P-complete

3. B v 2. C v D v ¬A 1. A v B v C

0 1

Inference by stochastic simulation

Basic idea:

- 1) Draw N samples from a sampling distribution S 2) Compute an approximate posterior probability \hat{P} 3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
 Rejection sampling: reject samples disagreeing with evidence
 Likelihood weighting: use evidence to weight samples
 Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution $\mathbf{P}(X_1,\dots,X_n)$ return x for i $\mathbf{x} \leftarrow$ an event with n elements $i=1 \ {
m to} \ n \ {
m do}$ $x_i \leftarrow {
m a} \ {
m random} \ {
m sample} \ {
m fom} \ {
m P}(X_i \mid parents(X_i))$ given the values of $Parents(X_i)$ in ${
m x}$

C P(S|C) .10 Sprinkler THHIS Example T T T TCloudy P(C) .50 Wet Grass P(W|S,R) .99 .90 .90 Rain F H C P(R|C) .20

C P(S|C) .10 Sprinkler T H H I S Example ㅋㅋ 2 P(C) Wet Grass P(W|S,R) .99 .90 .90 Rain C P(R|C) .20

P(S|C) .50 Sprinkler T H H I S Example +++ 2 P(C) Wet Grass P(W|S,R) .99 .90 .91 Rain 10 P(R|C)

، ام P(S|C) .50 T H H I S Example T T T TR P(C) Wet Grass P(W|S,R) .90 .90 Rain C P(R|C)
T .80
F .20

Chapter 14.4-5

C P(S|C) **T T T T** Example **Ŧ T Ŧ T** P(C) Wet Grass P(W|S,R) .99 .90 .01 C P(R|C)

C P(S|C) .10 **T T T T** Example +++R P(C) P(W|S,R) .90 .90 F T C P(R|C)

Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event $S_{PS}(x_1\dots x_n)=\Pi_{i=1}^n P(x_i|parents(X_i))=P(x_1\dots x_n)$

E.g., $S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$

Let $N_{PS}(x_1 \ldots x_n)$ be the number of samples generated for event x_1, \ldots, x_n

i.e., the true prior probability

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= P(x_1, \dots, x_n)$$

Then we have

That is, estimates derived from $\operatorname{PRIORSAMPLE}$ are consistent $= P(x_1 \dots x_n)$

Shorthand: $P(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n)$

Chapter 14.4-5

Rejection sampling

 ${f P}(X|{f e})$ estimated from samples agreeing with ${f e}$

function Rejection-Sampling (X, \mathbf{e}, bn, N) returns an estimate of $P(X|\mathbf{e})$ local variables: N, a vector of counts over X, initially zero $\mathbf{x} \leftarrow \operatorname{PRIOR-SAMPLE}(bn)$ if \mathbf{x} is consistent with \mathbf{e} then $\mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1$ where x is the value of X in \mathbf{x} return NORMALIZE($\mathbf{N}[X]$) for j = 1 to N do

.g., estimate $\mathbf{P}(Rain|Sprinkler=true)$ using 100 samples 27 samples have Sprinkler=trueOf these, 8 have Rain = true and 19 have Rain = false.

 $\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle$

Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X, \mathbf{e})$ $= \mathbf{N}_{PS}(X, \mathbf{e})/N_{PS}(\mathbf{e})$ $\approx \mathbf{P}(X, \mathbf{e})/P(\mathbf{e}) \qquad (15)$ $= \mathbf{P}(X|\mathbf{e})$ $S(X,\mathbf{e})$ (algorithm defn.) $V/N_{PS}(\mathbf{e})$ (normalized by $N_{PS}(\mathbf{e})$) $V(\mathbf{e})$ (property of PRIORSAMPLE) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting (X, \mathbf{e}, bn, N) returns an estimate of $P(X|\mathbf{e})$ local variables: \mathbf{W} , a vector of weighted counts over X, initially zero $\begin{aligned} &\text{for } j = 1 \text{ to } N \text{ do} \\ &\text{ x. } w \leftarrow \text{Weighted-Sample}(bn) \\ &\text{ } W[x] \leftarrow \text{W}[x] + w \text{ where } x \text{ is the value of } X \text{ in } \mathbf{x} \end{aligned}$ $&\text{return Normalize}(\mathbf{W}[X])$

function WeightTed-Sample(bn, e) returns an event and a weight

 $\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$ for i=1 to n do if X_i has a value x_i in e then $w \leftarrow w \times P(X_i = x_i \mid parents(X_i))$ else $x_i \leftarrow$ a random sample from $P(X_i \mid parents(X_i))$

 $\mathbf{return} \ \mathbf{x}, \ w$

Chapter 14.4-5

Likelihood weighting example

w = 1.0

Likelihood weighting example

w = 1.0

Likelihood weighting example

w = 1.0

Likelihood weighting example

 $w = 1.0 \times 0.1$

Likelihood weighting example

 $w = 1.0 \times 0.1$

Likelihood weighting example FFTTS тттт P(C) P(W|S,R).90 P(R|C)

 $w = 1.0 \times 0.1$

Chapter 14.4-5

Likelihood weighting example

 $w = 1.0 \times 0.1 \times 0.99 = 0.099$

Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is $S_{WS}(\mathbf{z}, \mathbf{e}) = \Pi_i^t$ $_{i1}P(z_{i}|parents(Z_{i}))$

Note: pays attention to evidence in ancestors only ⇒ somewhere "in between" prior and

posterior distribution

Weight for a given sample \mathbf{z}, \mathbf{e} is $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i|parents(E_i))$

Weighted sampling probability is $S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) \\ = \prod_{i=1}^{l} P(z_i|parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i|parents(E_i))$ $=P(\mathbf{z},\mathbf{e})$ (by standard global semantics of network)

because a few samples have nearly all the total weight but performance still degrades with many evidence variables Hence likelihood weighting returns consistent estimates

Approximate inference using MCMC

"State" of network = current assignment to all variables.

Sample each variable in turn, keeping evidence fixed Generate next state by sampling one variable given Markov blanket

function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)local variables: N[X], a vector of counts over X, initially zero ${\bf Z},$ the nonevidence variables in bn ${\bf x},$ the current state of the network, initially copied from ${\bf e}$

initialize ${\bf x}$ with random values for the variables in ${\bf Y}$ for j=1 to $N\,{\bf do}$

 $\begin{array}{l} \text{for each } Z_i \text{ in } Z \text{ do} \\ \text{sample the value of } Z_i \text{ in } x \text{ from } \mathbf{P}(Z_i|mb(Z_i)) \\ \text{given the values of } MB(Z_i) \text{ in } x \\ \mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1 \text{ where } x \text{ is the value of } X \text{ in } x \\ \text{return NORMALIZE}(\mathbf{N}[X]) \end{array}$

Can also choose a variable to sample at random each time

Chapter 14.4-5

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples

E.g., visit 100 states

31 have Rain = true, 69 have Rain = false

 $\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true)$

 $= Normalize(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is Sprinkler and Rain

Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows: $P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \Pi_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$

Easily implemented in message-passing parallel systems, brains

- Main computational problems:

1) Difficult to tell if convergence has been achieved 2) Can be wasteful if Markov blanket is large: $P(X_i|mb(X_i)) \ \text{won't change much (law of large numbers)}$

Chapter 14.4-5 37

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs space = time, very sensitive to topology

- Approximate inference by LW, MCMC:

 LW does poorly when there is lots of (downstream) evidence

 LW, MCMC generally insensitive to topology

 Convergence can be very slow with probabilities close to 1 or 0

 Can handle arbitrary combinations of discrete and continuous variables

Chapter 14.4-5 38