Instance-Based Learning

Preview

- k-Nearest Neighbor
- Other forms of IBL
- Collaborative filtering

Instance-Based Learning

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^{k} f(x_i)$$

Advantages and Disadvantages

Advantages:

- Training is very fast
- Learn complex target functions easily
- Don't lose information

Disadvantages:

- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

Distance Measures

- Numeric features:
 - Euclidean, Manhattan, L^n -norm:

$$L^{n}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \sqrt[n]{\sum_{i=1}^{\# \text{dim}} |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^{n}}$$

 $-\,$ Normalized by: range, std. deviation

• Symbolic features:

- Hamming/overlap
- Value difference measure (VDM): $\delta(val_i, val_j) = \sum_{h=1}^{\# \text{classes}} |P(c_h|val_i) - P(c_h|val_j)|^n$
- In general: Arbitrary, encode knowledge

Voronoi Diagram

S: Training set

Voronoi cell of $\mathbf{x} \in S$: All points closer to \mathbf{x} than to any other instance in S

Region of class C: Union of Voronoi cells of instances of C in S

Behavior in the Limit

 $\epsilon^*(\mathbf{x})$: Error of optimal prediction $\epsilon_{NN}(\mathbf{x})$: Error of nearest neighbor

Theorem: $\lim_{n\to\infty} \epsilon_{NN} \leq 2\epsilon^*$

Proof sketch (2-class case):

 $\epsilon_{NN} = p_+ p_{NN \in -} + p_- p_{NN \in +} \\ = p_+ (1 - p_{NN \in +}) + (1 - p_+) p_{NN \in +}$

 $\lim_{n \to \infty} p_{NN \in +} = p_+, \quad \lim_{n \to \infty} p_{NN \in -} = p_-$

 $\lim_{n \to \infty} \epsilon_{NN} = p_+(1-p_+) + (1-p_+)p_+ = 2\epsilon^*(1-\epsilon^*) \le 2\epsilon^*$

 $\lim_{n\to\infty}$ (Nearest neighbor) = Gibbs classifier

Theorem: $\lim_{n\to\infty, k\to\infty, k/n\to0} \epsilon_{kNN} = \epsilon^*$

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

1

and $d(x_q, x_i)$ is distance between x_q and x_i

Notice that now it makes sense to use all training examples instead of just k

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function
- Curse of dimensionality:
 - Nearest neighbor is easily misled when hi-dim X
 - Easy problems in low-dim are hard in hi-dim
 - Low-dim intuitions don't apply in hi-dim
- Examples:
 - Normal distribution
 - Uniform distribution on hypercube
 - Points on hypergrid
 - Approximation of sphere by cube
 - Volume of hypersphere

Feature Selection

- Filter approach:
 - Pre-select features individually
 - E.g., by info gain
- Wrapper approach: Run learner with different combinations of features
 - Forward selection
 - Backward elimination
 - Etc.

 $\begin{aligned} & \text{ForWARD_SELECTION}(FS) \\ & FS: \text{ Set of features used to describe examples} \\ & \text{Let } SS = \emptyset \\ & \text{Let } BestEval = 0 \\ & \text{Repeat} \\ & \text{Let } BestF = None \\ & \text{For each feature } F \text{ in } FS \text{ and not in } SS \\ & \text{Let } SS' = SS \cup \{F\} \\ & \text{If } Eval(SS') > BestEval \\ & \text{Then Let } BestF = F \\ & \text{Let } BestEval = Eval(SS') \\ & \text{If } BestF \neq None \\ & \text{Then Let } SS = SS \cup \{BestF\} \\ & \text{Until } BestF = None \text{ or } SS = FS \\ & \text{Return } SS \end{aligned}$

 $\begin{array}{l} \mbox{BackWard-Elimination}(FS)\\ FS: \mbox{Set of features used to describe examples}\\ \mbox{Let }SS = FS\\ \mbox{Let }BestEval = Eval(SS)\\ \mbox{Repeat}\\ \mbox{Let }WorstF = None.\\ \mbox{For each feature }F \mbox{ in }SS\\ \mbox{Let }SS' = SS - \{F\}\\ \mbox{If }Eval(SS') \geq BestEval\\ \mbox{Then Let }WorstF = F\\ \mbox{Let }BestEval = Eval(SS')\\ \mbox{If }WorstF \neq None\\ \mbox{Then Let }SS = SS - \{WorstF\}\\ \mbox{Until }WorstF = None \mbox{ or }SS = \emptyset\\ \mbox{Return }SS\\ \end{array}$

Reducing Computational Cost

Feature Weighting

- Stretch *j*th axis by weight z_j , where z_1, \ldots, z_n chosen to minimize prediction error
- Use gradient descent to find weights z_1, \ldots, z_n
- Setting z_j to zero eliminates this dimension altogether

- Efficient retrieval: k-D trees (only work in low dimensions)
- Efficient similarity comparison:
 - Use cheap approx. to weed out most instances
 - Use expensive measure on remainder
- Form prototypes
- Edited *k*-NN: Remove instances that don't affect frontier

Edited k-Nearest Neighbor

EDITED_k-NN(S) S: Set of instances For each instance \mathbf{x} in S If \mathbf{x} is correctly classified by $S - {\mathbf{x}}$ Remove \mathbf{x} from S Return S

EDITED_k-NN(S) S: Set of instances $T = \emptyset$ For each instance **x** in S If **x** is **not** correctly classified by T Add **x** to T Return T

Overfitting Avoidance

- Set k by cross-validation
- Form prototypes
- Remove noisy instances
 - E.g., remove **x** if all of **x**'s k nearest neighbors are of another class

Locally Weighted Regression

k-NN forms local approx. to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q ?

- Fit linear function to k nearest neighbors
- Fit quadratic, \dots
- Produces "piecewise approximation" to f

Several choices of error to minimize:

• Squared error over k nearest neighbors

$$E_1(x_q) \equiv \sum_{x \in kNN(x_q)} (f(x) - \hat{f}(x))^2$$

• Distance-weighted squared error over all neighbors

$$E_2(x_q) \equiv \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

• . . .

Radial Basis Function Networks

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

Common choice for K_u : $K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)}$

Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Use training instances (reflects distribution)
- Cluster instances and use centroids

Q2: How to train weights (assume here Gaussian K_u)

- First choose variance (and perhaps mean) for each K_u E.g., use EM
- Then hold K_u fixed, and train linear output layer
 Efficient methods to fit linear function
- Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \Re^n$ \rightarrow Need different "distance" measure

Case-based reasoning is instance-based learning applied to instances with symbolic logic descriptions

Widely used for answering help-desk queries

```
((user-complaint error53-on-shutdown)
(cpu-model PentiumIII)
(operating-system Windows2000)
(network-connection Ethernet)
(memory 128MB)
(installed-applications Office PhotoShop VirusScan)
(disk 10GB)
(likely-cause ???))
```

A stored case: T-junction pipe

Function:

A problem specification: Water faucet

Function:

Structure:

Case-Based Reasoning in CADET

CADET: Database of mechanical devices

- Each training example: (qualitative function, mechanical structure)
- New query: desired function
- Target value: mechanical structure for this function

Distance measure: match qualitative function descriptions

Lazy vs. Eager Learning

Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Lazy: Wait for query before generalizing

• k-nearest neighbor, case-based reasoning

Eager: Generalize before seeing query

• ID3, FOIL, Naive Bayes, neural networks, ...

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider H = linear functions)

Collaborative Filtering

(AKA Recommender Systems)

• Problem:

Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

• Previous approach:

Look at content

- Collaborative filtering:
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes

Collaborative Filtering

- Represent each user by vector of ratings
- Two types:
 - Yes/No
 - Explicit ratings (e.g., 0 * * * *)
- Predict rating:

$$\hat{R}_{ik} = \overline{R}_i + \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} (R_{jk} - \overline{R}_j)$$

• Similarity (Pearson coefficient):

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_i)(R_{jk} - \overline{R}_j)}{\sqrt{\sum_{k} (R_{ik} - \overline{R}_i)^2 \sum_{k} (R_{jk} - \overline{R}_j)^2}}$$

Fine Points

• Primitive version:

$$\hat{R}_{ik} = \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} R_{jk}$$

• $\alpha = (\sum |W_{ij}|)^{-1}$

- \mathbf{N}_i can be whole database, or only k nearest neighbors
- $R_{jk} =$ Rating of user j on item k
- \overline{R}_i = Average of all of user *j*'s ratings
- Summation in Pearson coefficient is over all items rated by *both* users
- In principle, any prediction method can be used for collaborative filtering

Example

	R_1	R_2	R_3	R_4	R_5	R_6
Alice	2	-	4	4	-	5
Bob	1	5	4	-	3	4
Chris	5	2	-	2	1	-
Diana	3	-	2	2	-	4

Instance-Based Learning: Summary

- k-Nearest Neighbor
- Other forms of IBL
- Collaborative filtering