CSEP 573

Chapters 3-5
Problem Solving using Search

“First, they do an on-line search”

© CSE Al Faculty



Example: The 8-puzzle
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Example: N Queens
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Example: N Queens
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State-Space Search Problems

General problem:
Given a start state, find a path to a goal state

e Can test if a state is a goal

o Glven a state, can generate its successor states
Variants:

* Find any path vs. a least-cost path

o Goal i1s completely specified, task is just to find the path

— Route planning

e Path doesn’t matter, only finding the goal state
— 8 puzzle, N queens



Tree Representation of 8-Puzzle Problem Space
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Implementation: general tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe <~ INSERT(M AKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe <~ INSERTALL(EXPAND(node, problem), fringe)

fringe (= frontier in the textbook) is the set of all leaf nodes available for expansion



Implementation: general tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe <~ INSERT(M AKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe <~ INSERTALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
s4—a new NODE
PARENT-NODE[s] < node; ACTION[s| <— action; STATE[s| < result
PATH-COST[s] < PATH-COST|[node] + STEP-COST(node, action, s)
DEPTH[s] - DEPTH[node] + 1
add s to successors

return successors




Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent
A

action = Right

State 5 4 Node depth =6
g=6
6 1 8
- ate
7 Il 3l 2 st
children

1



Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent, action
A

State || 5 4 Node depth =6
g=6
6 1 8
= ale
7 Il 3|l 2 st

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be o)



Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

lterative deepening search



Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

>@
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Properties of breadth-first search

Complete??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Space??

b+0*+b°+...+b? =0DY), i.e., exponential in d
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
Space??

Optimal??

b+b*+0+ ...+ b =0bY), i.e., exponential in d

O(bY) (keeps every node in memory)
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? b+ b +0b°+...+b% = ("), i.e., exponential in d
Space??  O(bY) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem for BFS.

Example: b =10, 10,000 nodes/sec, 1KB/node
d=3=> 1000 nodes, 0.1 sec, 1MB

d=5=> 100,000 nodes, 10 secs, 100 MB
d=9 = 10° nodes, 31 hours, 1 TB
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Uniform-cost search

Expand least-cost unexpanded node (used when step costs are unequal)

Implementation:
fringe = queue ordered by path cost (use priority queue)

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > € (small positive constant; 0 cost may cause infinite loop)

Time?? # of nodes with g < cost of optimal solution, O(b/¢"/¢I)
where C* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(bl¢"/¢l)

Optimal?? Yes—nodes expanded in increasing order of g(n)
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

>
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

@
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

27



Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(D
40
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

35



Properties of depth-first search

Complete??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path (‘GRAPH-SEARCH?" in textbook)
= complete in finite spaces

Time??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (‘GRAPH-SEARCH” in textbook)
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d  (m = maximum depth)
but if solutions are dense, may be much faster than breadth-first

Space??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??




Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No (may find a solution but least cost solution
may be on a different branch)
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Depth-limited search

= depth-first search with depth limit [,
i.e., nodes at depth [ have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE—DLS(MAKE—NODE(INITIAL—STATE[pTOblem])' Problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result <— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

41



Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH( PToblem) returns a solution

inputs: problem, a problem
| for depth<+ 0 to oo do
result < DEPTH-LIMITED-SEARCH( problem, depth)

if result # cutoff then return result
end

42



Iterative deepening search [ =0

it =20

@D

43



Iterative deepening search [ =1

at =1

>O © @ "O

o« e

44



Iterative deepening search [ =2

it =2

LLON
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Iterative deepening search [ =3
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Properties of iterative deepening search

Complete??
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Properties of iterative deepening search

Complete?? Yes

Time??
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Properties of iterative deepening search

Complete?? Yes

Time?? db' + (d — 1)b* + ... + b = O(b%)

Space??
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Properties of iterative deepening search

Complete?? Yes
Time?? db' + (d — )b + ...+ b% = O(b?)
Space?? O(bd)

Optimal??
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Properties of iterative deepening search

Complete?? Yes

Time?? db' + (d — 1)o* + ...+ b = O(b?)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)
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Summary of algorithms

Criterion Breadth-  Uniform-  Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if [ > d Yes
Time b? plC"/el b b b
Space be bIC /el bm bl bd
Optimal? Yes™ Yes™ No No Yes
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Forwards vs. Backwards
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Problem: Find the shortest route
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Bidirectional Search

Gl gl
T 20N

Motivation: b92 + phd9/2 << pd
Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess
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Repeated States

Failure to detect repeated states can turn a linear problem into an
exponential one! (e.g., repeated states in 8 puzzle)

Graph search algorithm: Store expanded nodes in a set called
closed (or explored) and only add new nodes to the fringe

55



Graph Search

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed < an empty set
fringe «+— INSERT(MAKE-NODE(INITIAL- STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <+ REMOVE- FRONT( fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node] is not in closed then
add STATE[node| to closed
fringe + INSERTALL(EXPAND(node, problem), fringe)
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All these methods are slow (blind)

Can we do better?
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Informed Search

Use problem-specific knowledge to guide search (use “heuristic
function™)

== THE SEARCH FOR BIN LADEN
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Best-first Search
Generalization of breadth first search
Priority queue of nodes to be explored
Evaluation function f(n) used for each node

Insert initial state into priority queue
While queue not empty
Node = head(queue)
If goal(node) then return node
Insert children of node into pr. queue

59



Who’s on (best) first?

Breadth first search is special case of best first
e with f(n) = depth(n)

Dijkstra’s Algorithm is best first
o with f(n) = g(n)

where g(n) = sum of edge costs from start
ton
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Greedy best-first search

Evaluation function f(n) = h(n) (heuristic) = estimate of cost
from n to goal

e.d., Route finding problems: hg, 5(n) = straight-line distance
from n to destination

Greedy best-first search expands the node that appears to be
closest to goal
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Example: Lost in
Romania

Need: Shortest path from Arad to Bucharest

=] Cradeaa

Straight—line distance

i Bucharst
Arad
Buchsrest
Cralova
Dobrets
Eforie
Fagaras
Giurgiu
Hirsovs
Ia=

Fitesti

Rimnicu Vikes
Sibiu
Timisoara
Urzicem

Vasln

Zerind

166

0
160
142
151
176
151
194
144
241
134

L
193
153
329

195
a4
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Example: Greedily Searching for Bucharest

a66
™ hg 5(Arad)
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Example: Greedily Searching for Bucharest

< Aad
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Example: Greedily Searching for Bucharest

Aad
{::ET:-IZ::}_; ‘I-i m;EJEJE _-ﬂ -~ E-
329 T4
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1?‘6 EI-EIL'I 1'E|EI
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Example: Greedily Searching for Bucharest

< Amd
S G
e 329 74
o ,f x -
256 P M E-EIIEI 1'i|3
s “,
CEbin DpBucharesD Greed
253 Q ,
doesn’t
pay!
Not optimall

Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest shorter
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Properties of Greedy Best-First Search

Complete? No — can get stuck in loops (unless closed list is used)

Time? O(b™), but a good heuristic can give dramatic
Improvement

Space? O(b™) -- keeps all nodes in memory a la breadth first
search

Optimal? No, as our example illustrated

67



A* Search

(Hart, Nilsson & Rafael 1968)

 Best first search with f(n) = g(n) + h(n)
g(n) = sum of edge costs from start to n

h(n) = heuristic function = estimate of lowest cost path
from n to goal

 If h(n) is “admissible” then search will be optimal

\ Underestimates cost
{of any solution which

can be reached from node
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Back in Romania

Again

JJDYS

] Oradea

Arad
Sibiu  gg9  Fagaras
118
80
Timisoara . Rimnicu Vilcea
1 . Pitesti
[] Lugoj
70 -
] Mehadia 10
75 138
Dobreta [] 120
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iar!

Neamt
u 87
] lasi
92
[] Vaslui
142
98
85 _I ] Hirsova
Urziceni
] 86
Bucharest
80 u
.. Eforie
] Giurgiu

end

Straight—line distance
to Bucharest

Arad 166
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 08
Rimnicu Vilcea o3
Sibiu 253
Timisoara 320
Urziceni 80
Vaslui 190
Zerind 374

69



A* Example for Romania

f(n) = g(n) + h(n) where
g(n) = sum of edge costs from start to n

h(n) = hg, p(n) = straight-line distance from n to destination

366=0+366
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393=140+253

A* Example

447=118+329

449=75+374
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A* Example

646=280+366 415=239+176 671=291+380 413=220+193

449=75+374

72



A* Example

CArad
Sibiu > Climisoara

447=118+329

CR ST (o @i

646=280+366 415=239+176 671=291+380

Clraiova > Pitesti > _Sibiu_

026=366+160 417=317+100 553=300+253

C Zerind

449=75+374
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A* Example

CArad >
Sibiu_> Climisoara

447=118+329

> > (o> @

646=280+366 671=291+380
¢ sibiu_> (BucharesD CCraiova D Pitesti > {_Sibiu_
H01=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Czerind 3

449=75+374
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A* Example

CArad D
<> Cimisoar>

447=118+329

@ Fagaras Oradea

646=280+366 671=291+380

C Sibiu_> (BucharesD

091=338+253 450=450+0 526=366+160

{ Craiova )

418=418+0 615=455+160 607=414+193

C Zerind 3

449=75+374
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Admissible heuristics

A heuristic h(n) is admissible if
for every node n,
h(n) < h*(n)
where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the
goal, 1.e., it Is optimistic
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Admissible Heuristics

Is the Straight Line Distance heuristic hg, 5(n)
admissible?
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Admissible Heuristics

Is the Straight Line Distance heuristic hg, 5(n)
admissible?

Yes, It never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal.
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Optimality of A™ (proof)

Suppose some suboptimal goal &, has been aener‘a‘red and is in the
ringe. Let n be an unexpanded node in the fringe such that n
is on a shortest path to an optimal goal 6.

SFerr

N

GO o,
f(6,) = 9(6,) since AG,) = 0
> g(6) since G, is suboptimal
f(6) = g(6) since (6) = O
f(6,) > f(6) from above
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Optimality of A™ (cont.)

Suppose some suboptimal goal &, has been generated and is in the
ringe. Let n be an unexpanded node in the fringe such that n
is on a shortest path to an optimal goal 6.

SFerr

N

GO
f(6,) > f(6) from prev slide
h(n) £ h*(n) since h is admissible

g(n) + h(n) < g(n) + h’(n)
f(n) = f(6) < (6,)

L

Hence f(n) < f(6,) = A" will never select G, for expansion.
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Optimality of A”

A" expands nodes in order of increasing f value
Gradually adds "'f-contours" of nodes

81



Okay, proof is done!
Time to wake up...
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Properties of A*

Complete? Yes (unless there are infinitely many nodes
with f < f(G) )

Time? Exponential (for most heuristic functions in
practice)

Space? Keeps all generated nodes in memory
(exponential number of nodes)

Optimal? Yes
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Admissible heuristics

E.g., for the 8-puzzle, what are some admissible
heuristic functions? (for # steps to goal state)

hn) = ?

hxn) = ?
7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

84



Admissible heuristics

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles

h-(n) = total Manhattan distance (no. of squares from
desired location of each ftile)

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
hy(S) = ?
h?(s) - ? Start State Goal State
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Admissible heuristics

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles
h,(n) = total Manhattan distance (no. of squares from

desired location of each tile)
7l 2 || 4 1 ||| 2
5 6 3|l 4|l 5
8 (|| 3 || 1 6 ||| 7 || 8
hl(s) = ? 8 Start State Goal State

hy(S) = ? 3+1+2+2+2+3+3+2 = 18
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Dominance

If hxn) 2 h,(n) for all n (both admissible) then A,
dominates A,

h, is better for search
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Dominance

E.g., for 8-puzzle heuristics h; and h,, typical
search costs (average number of nodes expanded
for solution depth d):

d=12 IDS = 3,644,035 nodes
A™(h,) = 227 nodes
A™(h,) = 73 nodes

a=24 IDS = too many nodes
A”(h;) = 39,135 nodes
A”(h,) = 1,641 nodes
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In general, A* not practical for large scale
problems due to memory requirements
(all generated nodes in memory)

Idea: Use iterative deepening



Iterative-Deepening A*

Like iterative-deepening search, but
cutoff is f cost (= g + h) rather than depth

At each iteration, cutoff is smallest f cost among
nodes that exceeded cutoff on prev iteration

90



Back to Admissable Heuristics
f(x) = g(x) + h(x)
g: cost so far
h: underestimate of remaining costs

e.g., hg p

Where do heuristics come from?

91



Relaxed Problems

Derive admissible heuristic from exact cost of a solution
to a relaxed version of problem

* For route planning, what is a relaxed problem?

Relax requirement that car stay on road -
Straight Line Distance becomes optimal cost

Cost of optimal solution to relaxed problem <
cost of optimal solution for real problem

92



Heuristics for eight puzzle

-

2

3

5

1

8

6

‘I

start

9

What can we relax?

1

2|3

5| 6

7

‘B

goal

Original Problem: Tile can move from location A to B if
A Is horizontally or vertically next to B and B is blank
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Heuristics for eight puzzle

7

213

5

116

8

‘I

9

1

2|3

5| 6

7

‘B

Relaxed 1: Tile can move from any location A to any location B
Cost = h; = number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is horizontally or
vertically next to B (note: B does not have to be blank)

Cost = h, = total Manhattan distance

You can try other possible heuristics in your HW #1

94



Need for Better Heuristics

Performance of h, (Manhattan Distance Heuristic)

e 8 Puzzle <1 second
e 15 Puzzle 1 minute
o 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation  gg



Creating New Heuristics

Given admissible heuristics h,, h,, ..., h_, none of them
dominating any other, how to choose the best?

Answer: No need to choose only one! Use:
h(n) = max {h,(n), h,(n), ..., h (n)}

h is admissible (why?)

h dominates all h; (by construction)

Can we do better with:

h’(n) = hy(n) + hy(n) + ... + h (n)?
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Pattern Databases

Idea: Use solution cost of a subproblem as heuristic. For
8-puzzle: pick any subset of tiles

E.g.,3,7,11,12
Precompute a table

« Compute optimal cost of solving just these tiles
— This is a lower bound on actual cost with all tiles

* For all possible configurations of these tiles
— Could be several million

« Use breadth first search back from goal state
— State = position of just these tiles (& blank)

 Admissible heuristic hpg for complete state = cost
of corresponding sub-problem state in database

Adapted from Richard Korf presentation
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Combining Multiple Databases

Can choose another set of tiles
* Precompute multiple tables
How to combine table values?
- Use the max trick!

E.g. Optimal solutions to Rubik's cube

* First found w/ IDA* using pattern DB
heuristics

* Multiple DBs were used (diff subsets of
cubies)

* Most problems solved optimally in 1 day
- Compare with 574,000 years for IDS

Adapted from Richard Korf presentation 98



Drawbacks of Standard Pattern DBs

Since we can only take max
» Diminishing returns on additional DBs

Would like to be able to add values

- But not exceed the actual solution cost (to
ensure admissible heuristic)

- How?

Adapted from Richard Korf presentation
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Disjoint Pattern DBs

Partition tiles into disjoint sets 11234
- For each set, precompute table 516 |7 |8

- Don't count moves of tiles not in set | 9 (10| 11/12
- This makes sure costs are disjoint 13114 15 .

- Can be added without overestimating!
- E.g. For 15 puzzle shown, 8 tile DB has 519 miillion entries
- And 7 tile DB has 58 million

During search
* Look up costs for each set in DB
* Add values to get heuristic function value

* Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation 100



Performance

15 Puzzle: 2000x speedup vs Manhattan dist

- IDA* with the two DBs solves 15 Puzzle
optimally in 30 milliseconds

24 Puzzle: 12 millionx speedup vs Manhattan

- IDA* can solve random instances in 2
days.

* Requires 4 DBs as shown
- Each DB has 128 million entries

* Without PDBs: 65000 years E

Adapted from Richard Korf presentation 101




Next: Local Search

How to climb hills
How to reach the top by annealing
How to simulate and profit from evolution
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Local search algorithms

In many optimization problems, the path to the goal
is irrelevant; the goal state itself is the solution

Find configuration satisfying constraints,
e.g., n-queens

In such cases, we can use local search algorithms

Keep a single "current" state, try to improve it
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Example: n7-queens

Put »n queens on an n x n board with no two
queens on the same row, column, or diagonal

W W
I W
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Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

function HiLL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current <~ MAKE- NODE(INITIAL-STATE[ problem])

loop do
neighbor +— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor
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Hill-climbing search

Problem: depending on initial state, can get
stuck in local maxima

nl:-_j:ctiu‘ifun:tinn

shonlder

N\

e

A

global maxirmim

local maximmm

.-"'"-'-F.-r.-’

"flat" local maximmm

m-stats spacs
cuoment

&tate
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Example: 8-queens problem

18 . 14 13 . 14

16 15 |2 | 14 |42 | 16

14 8| 18 15 2| 14

Heuristic? 14 [ W 8 16 16

(Value function) |W[1%| 17 & 18] 1e
WS o N

18 ‘y 15 w

14 17 |2 | 14 (42| 18

h = number of pairs of queens that are attacking each
other, either directly or indirectly

h = 17 for the above state (would like to minimize this)
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Example: 8-queens problem

A local minimum with A = 7. Need A = 0
How to find global minimum (or maximum)?
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Simulated Annealing

Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

function SIMULATED- ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node

neal, a node
I T, a “temperature” controlling prob. of downward steps I

current + MAKE-NODE(INITIAL-STATE[problem])
for t+ 1to oc do

T+ schedulel[l]

if T'= 0 then return current

next<— a randomly selected successor of current
AE+ VALUE[next] — VALUE[current]
if AE > 0 then current + next

else current + next only with probability e® £/
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Properties of simulated annealing

One can prove: If T decreases slowly enough,
then simulated annealing search will find a global
optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc
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Local Beam Search

Keep track of Ak states rather than just one
Start with & randomly generated states

At each iteration, all the successors of all & states
are generated

If any one is a goal state, stop; else select the &
best successors from the complete list and
repeat.
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Hey, perhaps sex
can improve
search?
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Sure - check out ye
book.

THE ORIGIN OF SPECIES

MEANS OF NATURAL SELECTION,

*# jlnlﬂﬂﬂilﬂir
e T I-=m‘

S
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Genetic Algorithms

A successor state is generated by combining two parent states
Start with & randomly generated states (population)

A state is represented as a string over a finite alphabet (often a
string of Os and 15s)

Evaluation function (fitness function). Higher values for better
states.

Produce the next generation of states by selection, crossover,
and mutation
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Example: 8-queens problem

String
Representation:
16257483

= NN WO~ 01 O N O

Can we evolve a solution through genetic algorithms?
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Example: Evolving 8 Queens
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Example: Evolving 8 Queens

24748552 |24 3% 32?@52411 32748552 |—= 32748152
32752411 /\i‘?—ﬂ;ﬂ\" 247%43552 >_<
tm 32?5.:%411 >_< 32752124 32E2124

' 24415411 —= 24415417

32543213 | 1M 14% 24415512-’-1

24752411 —= 24752411

Y

24415124

fa] ibi icl idj (=]
Thitial E’Dj_::ulati-:nh Fith=ss Function Selection Cioss—Ovei Ilutaticon

Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 x 7/2 = 28)

24/(24+23+20+11) = 31% probability of selection for
reproduction

23/(24+23+20+11) = 29% etc
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Queens crossing over

32752411

| 32748552 |

| 24748552




Let's move on to
adversarial games




Adversarial Games

Programs that can play competitive board
games

Minimax Search

Alpha-Beta Pruning
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Perfect
information

Imperfect
information

Games Overview

deterministic chance
chess, checkers, backgammon,
go, othello monopoly
poker,

bridge, scrabble
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Games & Game Theory

When there is more than one agent, the future is not
easily predictable anymore for the agent

In competitive environments (conflicting goals),
adversarial search becomes necessary

In AI, we usually consider special type of games:

* board games, which can be characterized as
deterministic, turn-taking, two-player, zero-sum
games with perfect information
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Games as Search

Components:
= States:
* Tnitial state:
= Successor function:
* Terminal test:

= Utility function:
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Games as Search

Components:
= States: board configurations

= Initial state: the board position and which player
will move

= Successor function: returns list of (move, state)
pairs, each indicating a legal move and the resulting
state

= Terminal test: determines when the game is over

= Utility function: gives a numeric value in terminal
states (e.g., -1, O, +1 in chess for loss, tie, win)
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Games as Search

Convention: first player is called MAX,

2nd player is called MIN

MAX moves first and they take turns until game is
over

Winner gets reward, loser gets penalty

Utility values stated from MAX's perspective
Initial state and legal moves define the game free
MAX uses game tree to determine next move
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Tic-Tac-Toe Example

MAX (X)
X X Tx
MIN (O) X X X
X X X
X|0 x| ol x|
MAX (X) o
x[olx| [x[o x|o
MIN {O) oo X
x[o[x] [x[o[x] [x[o[x
TERMINAL o X| [olo[x X
5] X/ x/o| [Xolo
Utility B 0 +1
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Optimal Strategy: Minimax Search

Find the contingent strategy for MAX assuming an
infallible MIN opponent

Assumption: Both players play optimally!

Given a game tree, the optimal strategy can be
determined by using the minimax value of each node
(defined recursively):

MINIMAX-VALUE(n)=
UTILITY(n) If nis a terminal
max; . ey MINIMAX-VALUE(s) If nis a MAX node
min, _ .oy MINIMAX-VALUE(s) If nis a MIN node
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Two-Ply Game Tree

“Ply” = move by 1 player

MAX

MIN




Two-Ply Game Tree




Two-Ply Game Tree

MIN
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Two-Ply Game Tree

Minimax decision = A,

MAX 3
A1 AE AE
MIN 9E 72 V£
AL A "ﬁ"13 A - AEE. A/ Al .":".3
A A AAAMNA A )

Minimax maximizes the worst-case outcome for max
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What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN
plays optimally

e Maximizes worst-case outcome for MAX

If MIN does not play optimally, MAX will do even
better (i.e. at least as much or more utility obtained
than if MIN was optimal) [Exercise 5.7 in textbook]
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Another example  max
( 4 ply)
min
max |¢ 0
min |0 0 0 0
- 29| | 37 25 1 43| |-75 49 21 51 58 -46 13 26 79

© Patrick Winston




max

max 0 0

-37 -25 1 -43 =75 49

58

-48

2€e

79

@ Patrick Winston




max

min | 29

-37

max

-43

75

49

-21

-51

58

-48

-13

26 79

© Patrick Winston




max 29

min | 29 37 -43

max

-5

49

-21

-1

58

-48

-13

26

79

@ Patrick Winston




max

min | 8

max | 22 43

21

-51

58

-48

13

2e

79

@ Pairick Winsion




max

-37

max | 43

-75 -51 -46 -13 26

@ Pairick Winsion




Choose this

max

move \

max

-37

-75

-51

-13

© Patrick

Winston




Minimax Algorithm

function MINIMAX-DECISION(state) returns an action

v+ MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
4= —00
|Tur a,s in 5UCCESSORS(state) do

v+ Max(v, MIN-VALUE(S))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

U4 00

for a, s in SUCCESSORS(state) do
v MiIN(v, MAX-VALUE(s))

return v
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Properties of minimax

Complete? Yes (if tree is finite)
Optimal? Yes (against an optimal opponent)
Time complexity? O(b™)

Space complexity? O(bm) (depth-first
exploration)
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Good enough?

Chess:
= branching factor b # 35

= game length m = 100
= search space b™ & 35100 » 10154

The Universe:
* number of atoms & 1078
= age ® 102! milliseconds

Can we search more efficiently?
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Next Class:
Wrap up of search
Logic and Reasoning

To do:
Homework #1
Sign up for class mailing list
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