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The ultimate goal is to learn
a complex task by imitation




Q: Can we just replay the motion?

A: Apparently not!
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Problem No.1

The motion pattern needs to be
optimized to match the dynamics of
the robot.

But! Direct optimization of full-body
"high-dimensional” joint angle data is
“intractable”.




Problem No.2

We bought a commercial robot, buf
the company just simply doesnt give
us the dynamic model.

What should we do?

The dynamic model “is not” available!




Research statement

The research goal is fto
"generate full-body humanoid
motions” while the problem of
"intractable of high dimensional
data” is inherited and the
problem of “absences of dynamic
model” is presence.




Proposed framework
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Actual sensory feedback
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Dimension reduction algorithms

@Linear Principal components analysis (PCA)
[Karhunen and Loeve 1940s’]

®None-Linear PCA [Kirby and Miranda, 1996]

@Locally Linear Embedding (LLE)
[Roweis and Saul, 2000]

AISOMAP [Tenenbaum et al., 2000]

@Gaussian Process Latent Variable Models
[Neil D. Lawrence 2003]
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Low Dimensional posture space

[Gaussian Process Latent Variable Models]

Courtesy of Keith Grochow
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The “eigenpose” space

3-D low-dimensional subspaces by linear PCA
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The “eigenpose” space

3-D low-dimensional subspaces by linear PCA
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Action subspace embedding

Map data fo cylindrical
coordinate system
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Learn 1-D representation
of motion in term of
motion phase angle:

[Ta h] =3 9(90)
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Optimization strategy

Gyroscope signals
Optimized motion

— — ‘Origird  : RVS=0.32%
—— Optimized : RVIS = 0.0521

Original data
Embed function
Optimized data
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— — ~Original  : RMS=0.4509
— Optimized : RMS = 0.0501

— — -Orginal : RMS=0.3795
— Optimized : RVIS = 0.0633
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Learning the predictive model

St_l_] =E F(St,...,St_n,Clt,...,Clt_n)

Posture command Gyroscope signal

(Action: at) (State: st.1)
Humanoid robot >

Prediction error
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NARX model-predictor

Nonlinear auforegressive network with exogenous inputs

Feed

Forward
Network

feedback

recurrent neural network
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NARX model-predictor

Nonlinear auforegressive network with exogenous inputs
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Gyroscope signals prediction

—e—-actual signal
predicted sig
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Predictive motion generator

a;k S=g argminr(F(St, SR N ,at_n))

af Humanoid robot > 311

Tuesday, February 23, 2010



Maths details

a, = argn}linF(F(st, a0
t

['(®) = A@; +A,0] + A0

X, = argmin'(F (o, 01, %, Xe—1))
X:ES
Searchspace o g O A
N | 0, Or 1 < Qs <P 1 +E&
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0 <gp<2m
[raaha] o g((PS)

Tuesday, February 23, 2010



Presentation outline

@Low-dimensional subspaces
@Motion optimization algorithm
@Motion optimization resulfs
@Motion imitation

@Lossless motion imitation

Tuesday, February 23, 2010



Motion-phase optimization

[Ta h] o g(gp)

SOI — arg Hgﬂ F(F(Wtywt—la Pt Sﬁt—1))

° Original posture
Embedded function
(O Optimized posture
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-D Eigenposes optimization result

Original posture

Constraint function

O Optimized posture
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3-D Eigenposes optimization result

— — -Origirdl  : RVS=0.323
—— Optimized : RVIS = 0.0521

— — -Origirdl  : RVIS =0.4509
——— Optimized: RVIS = 0.0501

— — Origird  : RVS=0.3795
—— Optimized : RVIS = 0.0533
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Human skeleton
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Joint trajectories

HOAPZ2: joint trajectories of right leg

Joint1
Joint2
Joint3
Joint4
Joint5

Joint6 I
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Joint8
Joint9
Joint10
Joint11
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Action subspace scaling
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Normalized joint data Action subspace scaling
mean = 0
standard deviation =1
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Imitate a human walking gait
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Imitate a human walking gait

Scale 0.7
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Walking by imitat
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Walking by imitation results
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Accuracy of 3-D eigenposes

81.38% 98% 100%
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Principal components

Sidestep 3-D eigenposes Accuracy accumulation

along the principal axes
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Hyperdimensional cylindrical transformation

For f € R"™ when n > 3

3-D mapping
f(dl’dQ’d?”.”,dn) f(wvyvz) Hf(g&,?“,h)
f(xvyvzlw"aZn—Q) wzarctan(%)

= \/$2 + 12
Suppose f € R? ey
f(x7y7Z17227Z3)
f(xayazl) f(spalra hl)
f(xawaQ) :> f(gp,fr, h2)
f(xayaz3) f(%pﬂ“a h3)
Thus
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Multiple cylindrical frames

Tuesday, February 23, 2010



Hyperdimensional motion optimization

Hyperdimensional action subspace embedding

[’I“, hl, hg, AT hlg] — g(gp)

Motion-phase optimization

%T = argnéinr(F(wtawt—lagptagpt—l))
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Hyperdimensional optimization result
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Conclusion

®Stable humanoid motion can be realized
through imitation

@Compact low-dimensional spaces allows
efficient optimization

@Dynamic model is not required
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Conclusion

®Stable humanoid motion can be realized
through imitation

@Compact low-dimensional spaces allows
efficient optimization

@Dynamic model is not required

Note:

P Learn directly from the real robot

P> Learn none-periodic motion

P Real-time feedback needs to be realized
P> Multiple learning modules organization
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Last but not least
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Last but not least
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Last but not least
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