All Packages Class Hierarchy This Package Previous Next Index WEKA's home
Class weka.classifiers.j48.PART
java.lang.Object
|
+----weka.classifiers.Classifier
|
+----weka.classifiers.DistributionClassifier
|
+----weka.classifiers.j48.PART
- public class PART
- extends DistributionClassifier
- implements OptionHandler, WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer
Class for generating a PART decision list. For more information, see
Eibe Frank and Ian H. Witten (1998). Generating
Accurate Rule Sets Without Global Optimization. In Shavlik, J.,
ed., Machine Learning: Proceedings of the Fifteenth
International Conference, Morgan Kaufmann Publishers, San
Francisco, CA.
Valid options are:
-C confidence
Set confidence threshold for pruning. (Default: 0.25)
-M number
Set minimum number of instances per leaf. (Default: 2)
-R
Use reduced error pruning.
-N number
Set number of folds for reduced error pruning. One fold is
used as the pruning set. (Default: 3)
-B
Use binary splits for nominal attributes.
- Version:
- $Revision: 1.14 $
- Author:
- Eibe Frank (eibe@cs.waikato.ac.nz)
PART()
-
buildClassifier(Instances)
- Generates the classifier.
classifyInstance(Instance)
- Classifies an instance.
distributionForInstance(Instance)
- Returns class probabilities for an instance.
enumerateMeasures()
- Returns an enumeration of the additional measure names
getBinarySplits()
- Get the value of binarySplits.
getConfidenceFactor()
- Get the value of CF.
getMeasure(String)
- Returns the value of the named measure
getMinNumObj()
- Get the value of minNumObj.
getNumFolds()
- Get the value of numFolds.
getOptions()
- Gets the current settings of the Classifier.
getReducedErrorPruning()
- Get the value of reducedErrorPruning.
listOptions()
- Returns an enumeration describing the available options
Valid options are:
-C confidence
Set confidence threshold for pruning.
main(String[])
- Main method for testing this class.
measureNumRules()
- Return the number of rules.
setBinarySplits(boolean)
- Set the value of binarySplits.
setConfidenceFactor(float)
- Set the value of CF.
setMinNumObj(int)
- Set the value of minNumObj.
setNumFolds(int)
- Set the value of numFolds.
setOptions(String[])
- Parses a given list of options.
setReducedErrorPruning(boolean)
- Set the value of reducedErrorPruning.
toString()
- Returns a description of the classifier
toSummaryString()
- Returns a superconcise version of the model
PART
public PART()
buildClassifier
public void buildClassifier(Instances instances) throws java.lang.Exception
Generates the classifier.
- Throws:
- java.lang.Exception - if classifier can't be built successfully
- Overrides:
- buildClassifier in class Classifier
classifyInstance
public double classifyInstance(Instance instance) throws java.lang.Exception
Classifies an instance.
- Throws:
- java.lang.Exception - if instance can't be classified successfully
- Overrides:
- classifyInstance in class DistributionClassifier
distributionForInstance
public final double[] distributionForInstance(Instance instance) throws java.lang.Exception
Returns class probabilities for an instance.
- Throws:
- java.lang.Exception - if the distribution can't be computed successfully
- Overrides:
- distributionForInstance in class DistributionClassifier
listOptions
public java.util.Enumeration listOptions()
Returns an enumeration describing the available options
Valid options are:
-C confidence
Set confidence threshold for pruning. (Default: 0.25)
-M number
Set minimum number of instances per leaf. (Default: 2)
-R
Use reduced error pruning.
-N number
Set number of folds for reduced error pruning. One fold is
used as the pruning set. (Default: 3)
-B
Use binary splits for nominal attributes.
- Returns:
- an enumeration of all the available options
setOptions
public void setOptions(java.lang.String options[]) throws java.lang.Exception
Parses a given list of options.
- Parameters:
options
- the list of options as an array of strings
- Throws:
- java.lang.Exception - if an option is not supported
getOptions
public java.lang.String[] getOptions()
Gets the current settings of the Classifier.
- Returns:
- an array of strings suitable for passing to setOptions
toString
public java.lang.String toString()
Returns a description of the classifier
- Overrides:
- toString in class java.lang.Object
toSummaryString
public java.lang.String toSummaryString()
Returns a superconcise version of the model
measureNumRules
public double measureNumRules()
Return the number of rules.
- Returns:
- the number of rules
enumerateMeasures
public java.util.Enumeration enumerateMeasures()
Returns an enumeration of the additional measure names
- Returns:
- an enumeration of the measure names
getMeasure
public double getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure
- Parameters:
measureName
- the name of the measure to query for its value
- Returns:
- the value of the named measure
- Throws:
- java.lang.IllegalArgumentException - if the named measure is not supported
getConfidenceFactor
public float getConfidenceFactor()
Get the value of CF.
- Returns:
- Value of CF.
setConfidenceFactor
public void setConfidenceFactor(float v)
Set the value of CF.
- Parameters:
v
- Value to assign to CF.
getMinNumObj
public int getMinNumObj()
Get the value of minNumObj.
- Returns:
- Value of minNumObj.
setMinNumObj
public void setMinNumObj(int v)
Set the value of minNumObj.
- Parameters:
v
- Value to assign to minNumObj.
getReducedErrorPruning
public boolean getReducedErrorPruning()
Get the value of reducedErrorPruning.
- Returns:
- Value of reducedErrorPruning.
setReducedErrorPruning
public void setReducedErrorPruning(boolean v)
Set the value of reducedErrorPruning.
- Parameters:
v
- Value to assign to reducedErrorPruning.
getNumFolds
public int getNumFolds()
Get the value of numFolds.
- Returns:
- Value of numFolds.
setNumFolds
public void setNumFolds(int v)
Set the value of numFolds.
- Parameters:
v
- Value to assign to numFolds.
getBinarySplits
public boolean getBinarySplits()
Get the value of binarySplits.
- Returns:
- Value of binarySplits.
setBinarySplits
public void setBinarySplits(boolean v)
Set the value of binarySplits.
- Parameters:
v
- Value to assign to binarySplits.
main
public static void main(java.lang.String argv[])
Main method for testing this class.
- Parameters:
String
- options
All Packages Class Hierarchy This Package Previous Next Index WEKA's home