All Packages Class Hierarchy This Package Previous Next Index WEKA's home
Class weka.core.ContingencyTables
java.lang.Object
|
+----weka.core.ContingencyTables
- public class ContingencyTables
- extends java.lang.Object
Class implementing some statistical routines for contingency tables.
- Version:
- $Revision: 1.4 $
- Author:
- Eibe Frank (eibe@cs.waikato.ac.nz)
ContingencyTables()
-
chiSquared(double[][], boolean)
- Returns chi-squared probability for a given matrix.
chiVal(double[][], boolean)
- Computes chi-squared statistic for a contingency table.
cochransCriterion(double[][])
- Tests if Cochran's criterion is fullfilled for the given
contingency table.
CramersV(double[][])
- Computes Cramer's V for a contingency table.
entropy(double[])
- Computes the entropy of the given array.
entropyConditionedOnColumns(double[][])
- Computes conditional entropy of the rows given
the columns.
entropyConditionedOnRows(double[][])
- Computes conditional entropy of the columns given
the rows.
entropyConditionedOnRows(double[][], double[][], double)
- Computes conditional entropy of the columns given the rows
of the test matrix with respect to the train matrix.
entropyOverColumns(double[][])
- Computes the columns' entropy for the given contingency table.
entropyOverRows(double[][])
- Computes the rows' entropy for the given contingency table.
gainRatio(double[][])
- Computes gain ratio for contingency table (split on rows).
log2MultipleHypergeometric(double[][])
- Returns negative base 2 logarithm of multiple hypergeometric
probability for a contingency table.
main(String[])
- Main method for testing this class.
reduceMatrix(double[][])
- Reduces a matrix by deleting all zero rows and columns.
symmetricalUncertainty(double[][])
- Calculates the symmetrical uncertainty for base 2.
tauVal(double[][])
- Computes Goodman and Kruskal's tau-value for a contingency table.
ContingencyTables
public ContingencyTables()
chiSquared
public static double chiSquared(double matrix[][],
boolean yates)
Returns chi-squared probability for a given matrix.
- Parameters:
matrix
- the contigency table
yates
- is Yates' correction to be used?
- Returns:
- the chi-squared probability
chiVal
public static double chiVal(double matrix[][],
boolean useYates)
Computes chi-squared statistic for a contingency table.
- Parameters:
matrix
- the contigency table
yates
- is Yates' correction to be used?
- Returns:
- the value of the chi-squared statistic
cochransCriterion
public static boolean cochransCriterion(double matrix[][])
Tests if Cochran's criterion is fullfilled for the given
contingency table. Rows and columns with all zeros are not considered
relevant.
- Parameters:
matrix
- the contigency table to be tested
- Returns:
- true if contingency table is ok, false if not
CramersV
public static double CramersV(double matrix[][])
Computes Cramer's V for a contingency table.
- Parameters:
matrix
- the contingency table
- Returns:
- Cramer's V
entropy
public static double entropy(double array[])
Computes the entropy of the given array.
- Parameters:
array
- the array
- Returns:
- the entropy
entropyConditionedOnColumns
public static double entropyConditionedOnColumns(double matrix[][])
Computes conditional entropy of the rows given
the columns.
- Parameters:
matrix
- the contingency table
- Returns:
- the conditional entropy of the rows given the columns
entropyConditionedOnRows
public static double entropyConditionedOnRows(double matrix[][])
Computes conditional entropy of the columns given
the rows.
- Parameters:
matrix
- the contingency table
- Returns:
- the conditional entropy of the columns given the rows
entropyConditionedOnRows
public static double entropyConditionedOnRows(double train[][],
double test[][],
double numClasses)
Computes conditional entropy of the columns given the rows
of the test matrix with respect to the train matrix. Uses a
Laplace prior. Does NOT normalize the entropy.
- Parameters:
train
- the train matrix
test
- the test matrix
the
- number of symbols for Laplace
- Returns:
- the entropy
entropyOverRows
public static double entropyOverRows(double matrix[][])
Computes the rows' entropy for the given contingency table.
- Parameters:
matrix
- the contingency table
- Returns:
- the rows' entropy
entropyOverColumns
public static double entropyOverColumns(double matrix[][])
Computes the columns' entropy for the given contingency table.
- Parameters:
matrix
- the contingency table
- Returns:
- the columns' entropy
gainRatio
public static double gainRatio(double matrix[][])
Computes gain ratio for contingency table (split on rows).
Returns Double.MAX_VALUE if the split entropy is 0.
- Parameters:
matrix
- the contingency table
- Returns:
- the gain ratio
log2MultipleHypergeometric
public static double log2MultipleHypergeometric(double matrix[][])
Returns negative base 2 logarithm of multiple hypergeometric
probability for a contingency table.
- Parameters:
matrix
- the contingency table
- Returns:
- the log of the hypergeometric probability of the contingency table
reduceMatrix
public static double[][] reduceMatrix(double matrix[][])
Reduces a matrix by deleting all zero rows and columns.
- Parameters:
matrix
- the matrix to be reduced
the
- matrix with all zero rows and columns deleted
symmetricalUncertainty
public static double symmetricalUncertainty(double matrix[][])
Calculates the symmetrical uncertainty for base 2.
- Parameters:
matrix
- the contingency table
- Returns:
- the calculated symmetrical uncertainty
tauVal
public static double tauVal(double matrix[][])
Computes Goodman and Kruskal's tau-value for a contingency table.
- Parameters:
matrix
- the contingency table
Goodman
- and Kruskal's tau-value
main
public static void main(java.lang.String ops[])
Main method for testing this class.
All Packages Class Hierarchy This Package Previous Next Index WEKA's home