
Uninformed Search
Chapter 3

(Based on slides by Stuart Russell, Dan Weld, Oren Etzioni,
Henry Kautz, and other UW-AI faculty)

What is Search?

• Search is a class of techniques for systematically
finding or constructing solutions to problems.

• Example technique: generate-and-test.
• Example problem: Combination lock.

1. Generate a possible solution.
2. Test the solution.
3. If solution found THEN done ELSE return to step

1.

2

Search thru a Problem
Space/State Space

– Set of states

– Operators [and costs]

– Start state

– Goal state [test]

3

• Path: start  a state satisfying goal test

• [May require shortest path]

Input:

Output:

Why is search interesting?

• Many (all?) AI problems can be formulated as
search problems!

• Examples:
• Path planning

• Games

• Natural Language Processing

• Machine learning

• …

4

Example: The 8-puzzle

• states?

• actions?

• goal test?

• path cost?

5

Example: The 8-puzzle

• states? locations of tiles
• actions? move blank left, right, up, down
• goal test? = goal state (given)
• path cost? 1 per move
•

• [Note: optimal solution of n-Puzzle family is NP-hard]

6

Search Tree Example:
Fragment of 8-Puzzle Problem Space

7

Example: robotic assembly

• states?: real-valued coordinates of robot joint angles parts of the object to be
assembled

•
• actions?: continuous motions of robot joints
•
• goal test?: complete assembly
•
• path cost?: time to execute
•

8

Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

•

• Formulate goal:

– be in Bucharest

–

• Formulate problem:

– states: various cities

– actions: drive between cities

–

• Find solution:

– sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

–

9

Example: N Queens

• Input:
– Set of states

– Operators [and costs]

– Start state

– Goal state (test)

• Output

10

Q

Q

Q

Q

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree includes state, parent

node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various fields and using the
SuccessorFnof the problem to create the corresponding states.

•

11

Search strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

– systematicity: does it visit each state at most once?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

12

Uninformed search strategies

• Uninformed search strategies use only the information
available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search

13

Repeated states

• Failure to detect repeated states can turn a
linear problem into an exponential one!

•

14

Depth First Search
• Maintain stack of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

15

a

b

c d

e

f g h

Yes except for infinite spaces

O(b^m)

O(bm)

http://www.youtube.com/watch?v=dtoFAvtVE4U

http://www.youtube.com/watch?v=dtoFAvtVE4U

Breadth First Search

• Maintain queue of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

16

a

b c

d e f g h

Yes (b is finite)

O(b^d)

O(b^d)

http://www.youtube.com/watch?v=z6lUnb9ktkE

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

• Suppose:

17

2 GHz CPU

1 GB main memory

100 instructions / expansion

5 bytes / node

200,000 expansions / sec

Memory filled in 100 sec … < 2 minutes

Iterative deepening search

18

Iterative deepening search l =0

19

Iterative deepening search l =1

20

Iterative deepening search l =2

21

Iterative deepening search l =3

22

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with branching
factor b:

• NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

• NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
•

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
–

– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

• Overhead = (123,456 - 111,111)/111,111 = 11%

23

iterative deepening search

• Complete? Yes

• Time?
– (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd+1)

• Space?
– O(bd)

• Optimal?
– Yes, if step cost = 1

• Systematic?

24

Summary of algorithms

26

Forwards vs. Backwards

27

vs. Bidirectional

28

Problem

• All these methods are slow (blind)

• Solution  add guidance (“heuristic estimate”)

 “informed search”

29

