Informed search algorithms

Chapter 3

(Based on Slides by Stuart Russell,
Richard Korf and UW-AI faculty)

Informed (Heuristic) Search

ldea: be smart ‘
about what paths
to try. \ z
@O)
/0

Blind Search vs. Informed Search

e What's the difference?

* How do we formally specify this?

A node is selected for expansion based on an
evaluation function that estimates cost to goal.

General Tree Search Paradigm

function tree-search(root-node)
fringe € successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
If goal-test(state) return solution(node)
fringe < insert-all(successors(node),fringe) }
return failure
end tree-search

General Graph Search Paradigm

function tree-search(root-node)
fringe € successors(root-node)
explored < empty
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
if goal-test(state) return solution(node)
fringe < insert-all(successors(node),fringe, if node not in explored)
explored < insert(node,explored)
}
return failure
end tree-search

Best-First Search

e Use an evaluation function f(n) for node n.
* Always choose the node from fringe that has

the lowest f value.

OO
(&

Best-first search

A search strategy is defined by picking the order of node
expansion

Idea: use an evaluation function f(n) for each node
— estimate of "desirability”

— Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of desirability

Special cases:

— greedy best-first search
— A’ search

75

Arad

Romania with step costs in km

aa

Rimnkeu ¥Wikcea

[] ¥aslul

-] Hirsowa

Straight—line distance

o Buchamst
Arad
Bucha rest
Crawova
Dobrets
Eforie
IFagaras
Giurgiu
Hirsowva
Ia=

Lugoj
Mehadis
MNeamt
Oradea
Pitesti
Rimnkcu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

56

0
L&
131
lal
17&

151
224
14
241
1M

L
193
153
329

195
A4

Greedy best-first search

e Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

* e.g., hqp(n) = straight-line distance from n to
Bucharest

* Greedy best-first search expands the node
that appears to be closest to goal

Properties of greedy best-first search

Complete?

No — can get stuck in loops, e.g., lasi 2 Neamt =2 lasi 2
Neamt 2

Time?

O(b™), but a good heuristic can give dramatic
improvement

Space?

O(b™) -- keeps all nodes in memory
Optimal?

No

A search

ldea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal

A* for

Romanian Shortest Path

366=0+366

12

393=140+253 447=118+329 449=75+374

13

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

C_Arad
Sibiu> Climisoara CZerind 2

447=118+329 449=75+374

C_ Arad DPClagaras D COradea > @ienViced

646=280+366 415=239+176 67/1=291+380

Clraiova > Pitesti > C_Sibiu_

526=366+160 417=317+100 553=300+253

C_Arad D
Sibiu_> Climisoara) CZerind 2

447=118+329 449=75+374

> G o> @i

646=280+366 671=291+380

C_sibiu_> Bucharesy CCraiova S Pitesti > _Sibiu_3

0991=338+253 450=450+0 526=366+160 417=317+100 553=300+253

CArad >
Sitiu > Climisoara> C Zerind 3

447=118+329 449=75+374

Chrad > agarasd (Cradea > @i i

646=280+366 671=291+380
0591=338+253 450=450+0 526=366+160

{ Craiova)

418=418+0 615=455+160 607=414+193

Admissible heuristics

A heuristic h(n) is admissible if for every noden,

h(n) < h*(n), where h*(n) is the true cost to reach the goal state from
n.

An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

Example: hg, p(n) (never overestimates the actual road distance)

Theorem: If h(n)is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

* h(n)is consistentif
— for every node n
— for every successor n” due to legal action a
— h(n) <=c(n,a,n”) + h(n")

n

c(n,a,n’)

n

h(n)

h(n) [

* Every consistent heuristicis also admissible.

* Theorem:If h(n)is consistent, A" using GRAPH-
SEARCH s optimal

19

Properties of A*

Complete?

Yes (unless there are infinitely many nodes with f < f(G))

Time? Exponential

Space? Keeps all nodes in memory

Optimal?
Yes (depending upon search algo and heuristic property)

http://mww.youtube.com/watch?v=huJEgJ82360

http://www.youtube.com/watch?v=huJEgJ82360

Admissible heuristics

E.g., for the 8-puzzle:

* h;(n)=number of misplaced tiles
* h,(n)=total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

°
1= =

=
n n
i |
V|V

Admissible heuristics

E.g., for the 8-puzzle:

* h;(n)=number of misplaced tiles
* h,(n)=total Manhattan distance

(i.e., no. of squares from desired location of each tile)
7 2 4 1
5 6 3 4
8 3 1 6 7
Start State Goal State

’ 8
?3+1+24242+3+3+2 =18

°
1= 15
n n
Tl

Dominance

If h,(n) > h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of node expanded):

d=12 IDS = 3,644,035 nodes
A’(h,) =227 nodes
A*(h,) = 73 nodes

d=24 IDS = too many nodes
A*(h,) = 39,135 nodes
A*(h) =1, 641 nodes

Relaxed problems

A problem with fewer restrictions on the actions is called a
relaxed problem

The cost of an optimal solution to a relaxed problem s an
admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h,(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then h,(n) gives the shortest solution

Memory Problem?

* |terative deepening A*

— Similar to ID search

Non-optimal variations

 Use more informative, but inadmissible
heuristics

 Weighted A*
—f(n) = g(n)+ w.h(n) where w>1
— Typically w=5.
— Solution quality bounded by w for admissible h

Sizes of Problem Spaces

Problem Nodes Brute-Force Search Time (10 million

nodes/second)
8 Puzzle: 10° .01 seconds
23 Rubik’s Cube: 106 .2 seconds
15 Puzzle: 1013 6 days

33 Rubik’s Cube: 10%° 68,000 years
24 Puzzle: 10%° 12 billion years

Performance of IDA* on 15 Puzzle

Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

Optimal solution lengths average 53 moves.
400 million nodes generated on average.

Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan Distance

To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000

years on average.
Assumes that each tile moves independently
In fact, tiles interfere with each other.

Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

ﬁ

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

s B

ﬁ

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

s

ﬁ

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

ﬁ

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves, but linear conflict adds 2

additional moves.

Linear Conflict Heuristic

Hansson, Mayer, and Yung, 1991

Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

Still not accurate enough to solve 24-Puzzle
We can generalize this idea further.

More Complex Tile Interactions

ﬁ

M.d. is 19 moves, but 31 moves are
needed.

M.d. is 20 moves, but 28 moves are
needed

M.d. is 17 moves, but 27 moves are
needed

Pattern Database Heuristics

* Culberson and Schaeffer, 1996

* A pattern database is a complete set of such
positions, with associated number of moves.

e e.g.a 7/-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern Databases

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

Combining Multiple Databases

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Overall heuristic is maximum of 31 moves

Additive Pattern Databases

Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

n contrast, we count only moves of the
nattern tiles, ighoring non-pattern moves.

f no tile belongs to more than one pattern,
then we can add their heuristic values.

Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

The 7-tile database contains 58 million entries. The 8-tile database contains
519 million entries.

Computing the Heuristic

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Overall heuristic is sum, or 20+25=45 moves

Performance on 15 Puzzle

* |IDA* with a heuristic based on these additive
pattern databases can optimally solve random
15 puzzle instances in less than 29
milliseconds on average.

 This is about 1700 times faster than with
Manhattan distance on the same machine.

Assignment 1

* Flashlight Problem
* Do not use pattern database heuristics

