Informed search algorithms

Chapter 3

(Based on Slides by Stuart Russell,
Richard Korf and UW-AI faculty)



Informed (Heuristic) Search

ldea: be smart ‘
about what paths
to try. \ z
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Blind Search vs. Informed Search

e What's the difference?

* How do we formally specify this?

A node is selected for expansion based on an
evaluation function that estimates cost to goal.




General Tree Search Paradigm

function tree-search(root-node)
fringe € successors(root-node)
while ( notempty(fringe) )
{node < remove-first(fringe)
state < state(node)
If goal-test(state) return solution(node)
fringe < insert-all(successors(node),fringe) }
return failure
end tree-search




General Graph Search Paradigm

function tree-search(root-node)
fringe € successors(root-node)
explored < empty
while ( notempty(fringe) )
{node < remove-first(fringe)
state < state(node)
if goal-test(state) return solution(node)
fringe < insert-all(successors(node),fringe, if node not in explored)
explored < insert(node,explored)
}
return failure
end tree-search




Best-First Search

e Use an evaluation function f(n) for node n.
* Always choose the node from fringe that has

the lowest f value.
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Best-first search

A search strategy is defined by picking the order of node
expansion

Idea: use an evaluation function f(n) for each node
— estimate of "desirability”

— Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of desirability

Special cases:

— greedy best-first search
— A’ search
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Greedy best-first search

e Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

* e.g., hqp(n) = straight-line distance from n to
Bucharest

* Greedy best-first search expands the node
that appears to be closest to goal



Properties of greedy best-first search

Complete?

No — can get stuck in loops, e.g., lasi 2 Neamt =2 lasi 2
Neamt 2

Time?

O(b™), but a good heuristic can give dramatic
improvement

Space?

O(b™) -- keeps all nodes in memory
Optimal?

No




A search

ldea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal



A* for

Romanian Shortest Path
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Admissible heuristics

A heuristic h(n) is admissible if for every noden,

h(n) < h*(n), where h*(n) is the true cost to reach the goal state from
n.

An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

Example: hg, p(n) (never overestimates the actual road distance)

Theorem: If h(n)is admissible, A* using TREE-SEARCH is optimal



Consistent Heuristics

* h(n)is consistentif
— for every node n
— for every successor n” due to legal action a
— h(n) <=c(n,a,n”) + h(n")

n

c(n,a,n’)

n

h(n)

h(n) [

* Every consistent heuristicis also admissible.

* Theorem:If h(n)is consistent, A" using GRAPH-
SEARCH s optimal
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Properties of A*

Complete?

Yes (unless there are infinitely many nodes with f < f(G) )

Time? Exponential

Space? Keeps all nodes in memory

Optimal?
Yes (depending upon search algo and heuristic property)

http://mww.youtube.com/watch?v=huJEgJ82360



http://www.youtube.com/watch?v=huJEgJ82360

Admissible heuristics

E.g., for the 8-puzzle:

* h;(n)=number of misplaced tiles
* h,(n)=total Manhattan distance
(i.e., no. of squares from desired location of each tile)
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Admissible heuristics

E.g., for the 8-puzzle:

* h;(n)=number of misplaced tiles
* h,(n)=total Manhattan distance

(i.e., no. of squares from desired location of each tile)
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Dominance

If h,(n) > h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of node expanded):

d=12 IDS = 3,644,035 nodes
A’(h,) =227 nodes
A*(h,) = 73 nodes

d=24 IDS = too many nodes
A*(h,) = 39,135 nodes
A*(h ) =1, 641 nodes



Relaxed problems

A problem with fewer restrictions on the actions is called a
relaxed problem

The cost of an optimal solution to a relaxed problem s an
admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h,(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then h,(n) gives the shortest solution



Memory Problem?

* |terative deepening A*

— Similar to ID search



Non-optimal variations

 Use more informative, but inadmissible
heuristics

 Weighted A*
—f(n) = g(n)+ w.h(n) where w>1
— Typically w=5.
— Solution quality bounded by w for admissible h



Sizes of Problem Spaces

Problem Nodes Brute-Force Search Time (10 million

nodes/second)
8 Puzzle: 10° .01 seconds
23 Rubik’s Cube: 106 .2 seconds
15 Puzzle: 1013 6 days

33 Rubik’s Cube: 10%° 68,000 years
24 Puzzle: 10%° 12 billion years



Performance of IDA* on 15 Puzzle

Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

Optimal solution lengths average 53 moves.
400 million nodes generated on average.

Average solution time is about 50 seconds on
current machines.



Limitation of Manhattan Distance

To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000

years on average.
Assumes that each tile moves independently
In fact, tiles interfere with each other.

Accounting for these interactions is the key to
more accurate heuristic functions.



Example: Linear Conflict

Manhattan distance is 2+2=4 moves
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Example: Linear Conflict

Manhattan distance is 2+2=4 moves, but linear conflict adds 2

additional moves.



Linear Conflict Heuristic

Hansson, Mayer, and Yung, 1991

Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

Still not accurate enough to solve 24-Puzzle
We can generalize this idea further.



More Complex Tile Interactions

ﬁ

M.d. is 19 moves, but 31 moves are
needed.

M.d. is 20 moves, but 28 moves are
needed

M.d. is 17 moves, but 27 moves are
needed




Pattern Database Heuristics

* Culberson and Schaeffer, 1996

* A pattern database is a complete set of such
positions, with associated number of moves.

e e.g.a 7/-tile pattern database for the Fifteen
Puzzle contains 519 million entries.



Heuristics from Pattern Databases

31 moves is a lower bound on the total number of moves needed to solve
this particular state.



Combining Multiple Databases

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Overall heuristic is maximum of 31 moves



Additive Pattern Databases

Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

n contrast, we count only moves of the
nattern tiles, ighoring non-pattern moves.

f no tile belongs to more than one pattern,
then we can add their heuristic values.

Manhattan distance is a special case of this,
where each pattern contains a single tile.



Example Additive Databases

The 7-tile database contains 58 million entries. The 8-tile database contains
519 million entries.



Computing the Heuristic

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Overall heuristic is sum, or 20+25=45 moves



Performance on 15 Puzzle

* |IDA* with a heuristic based on these additive
pattern databases can optimally solve random
15 puzzle instances in less than 29
milliseconds on average.

 This is about 1700 times faster than with
Manhattan distance on the same machine.



Assignment 1

* Flashlight Problem
* Do not use pattern database heuristics



