
Classical Planning
Chapter 10

Mausam

(Based on slides of Dan Weld,
Marie desJardins)

Planning
• Given

– a logical description of the initial situation,

– a logical description of the goal conditions, and

– a logical description of a set of possible actions,

• find

– a sequence of actions (a plan of actions) that brings us
from the initial situation to a situation in which the goal
conditions hold.

© D. Weld, D. Fox 2

Example: BlocksWorld

© Daniel S. Weld 3

A

C

B C

B

A

Planning Input:
State Variables/Propositions

• Types: block --- a, b, c

• (on-table a) (on-table b) (on-table c)

• (clear a) (clear b) (clear c)

• (arm-empty)

• (holding a) (holding b) (holding c)

• (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

• (on-table ?b); clear (?b)

• (arm-empty); holding (?b)

• (on ?b1 ?b2)
© D. Weld, D. Fox 4

No. of state variables =16

No. of states = 216

No. of reachable states = ?

Planning Input: Actions
• pickup a b, pickup a c, …

• place a b, place a c, …

• pickup-table a, pickup-table b, …

• place-table a, place-table b, …

© D. Weld, D. Fox 5

• pickup ?b1 ?b2

• place ?b1 ?b2

• pickup-table ?b

• place-table ?b

Total: 6 + 6 + 3 + 3 = 18 “ground” actions

Total: 4 action schemata

Planning Input: Actions (contd)
• :action pickup ?b1 ?b2

:precondition

(on ?b1 ?b2)

(clear ?b1)

(arm-empty)

:effect

(holding ?b1)

(not (on ?b1 ?b2))

(clear ?b2)

(not (arm-empty))
© D. Weld, D. Fox 6

• :action pickup-table ?b

:precondition

(on-table ?b)

(clear ?b)

(arm-empty)

:effect

(holding ?b)

(not (on-table ?b))

(not (arm-empty))

Planning Input: Initial State

• (on-table a) (on-table b)

• (arm-empty)

• (clear c) (clear b)

• (on c a)

• All other propositions false
• not mentioned  false

© D. Weld, D. Fox 7

A

C

B

Planning Input: Goal

• (on-table c) AND (on b c) AND (on a b)

• Is this a state?

• In planning a goal is a set of states

© D. Weld, D. Fox 8

C

B

A

Planning Input Representation

• Description of initial state of world

– Set of propositions

• Description of goal: i.e. set of worlds

– E.g., Logical conjunction

– Any world satisfying conjunction is a goal

• Description of available actions

© D. Weld, D. Fox 9

Planning vs. Problem-Solving

© D. Weld, D. Fox 10

Basic difference: Explicit, logic-based representation

• States/Situations: descriptions of the world by logical
formulae
 agent can explicitly reason about and communicate with
the world.

• Goal conditions as logical formulae vs. goal test (black box)
 agent can reflect on its goals.

• Operators/Actions: Axioms or transformation on formulae in
a logical form
 agent can gain information about the effects of actions by
inspecting the operators.

Classical Planning

• Simplifying assumptions
– Atomic time
– Agent is omniscient (no sensing necessary).
– Agent is sole cause of change
– Actions have deterministic effects

• STRIPS representation
– World = set of true propositions (conjunction)
– Actions:

• Precondition: (conjunction of positive literals, no functions)
• Effects (conjunction of literals, no functions)

– Goal = conjunction of positive literals

– Is Blocks World in STRIPS?

– Goals = conjunctions (Rich ^ Famous)
© D. Weld, D. Fox 11

Planning as Search
• Forward Search in ? Space

– World State Space

– start from start state; look for a state with goal property

• dfs/bfs

• A*

• Backward Search in ? Space
– Subgoal Space

– start from goal conjunction; look for subgoal that holds in initial
state

• dfs/bfs/A*

• Local Search in ? Space

– Plan Space
© D. Weld, D. Fox 12

Forward World-Space Search

© Daniel S. Weld 13

A

C

B

C

B

A

Initial

State
Goal

StateA

C

B

A

C
B

Forward State-Space Search

• Initial state: set of positive ground literals (CWA:
literals not appearing are false)

• Actions:

– applicable if preconditions satisfied

– add positive effect literals

– remove negative effect literals

• Goal test: checks whether state satisfies goal

• Step cost: typically 1

© D. Weld, D. Fox 14

Heuristics for State-Space Search
• Count number of false goal propositions in current state

Admissible?

NO

• Subgoal independence assumption:
– Cost of solving conjunction is sum of cost of solving each subgoal

independently
– Optimistic: ignores negative interactions

– Pessimistic: ignores redundancy

– Admissible? No

– Can you make this admissible?

© D. Weld, D. Fox 15

Heuristics for State Space Search
(contd)

• Delete all preconditions from actions, solve
easy relaxed problem, use length

Admissible?

YES

• Delete negative effects from actions, solve
easier relaxed problem, use length

Admissible?

YES (if Goal has only positive literals, true in
STRIPS)

CSE 573

16

Backward Subgoal-Space Search
• Regression planning

• Problem: Need to find predecessors of
state

• Problem: Many possible goal states
are equally acceptable.

• From which one does one search?

© D. Weld, D. Fox 17

DC
B
A

E

D

C
B
A

E

D
C
B
A

E

* * *

A
C

B

Initial State is

completely defined

D
E

Regression
• Let G be a KR sentence (e.g. in logic)

• Relevance: needs to achieve one subgoal

• Consistency: does not undo any other subgoal
• Regressing a goal, G, thru an action, A

yields the weakest precondition G’
– Such that: if G’ is true before A is executed
– G is guaranteed to be true afterwards

© D. Weld, D. Fox 18

A G
pre

cond

e
ffe

ct

G’

Represents a
set of world

states

Represents a
set of world

states

Regression Example

© D. Weld, D. Fox 19

• :action pickup-table ?b

:precondition

(on-table ?b)

(clear ?b)

(arm-empty)

:effect

(holding ?b)

(not (on-table ?b))

(not (arm-empty))

A G

pre
cond

e
ffe

ct

G’

(and (holding C)
(on A B))

(and (clear C)
(on-table C)
(arm-empty)
(on A B))

Remove positive effects
Add preconditions for A

A
C

B
A

C B

Complexity of Planning
• Size of Search Space

– Forward: size of world state space

– Backward: size of subsets of partial state space!

• Size of World state space

– exponential in problem representation

• What to do?

– Informative heuristic that can be computed in
polynomial time!

© D. Weld, D. Fox 20

Planning Graph: Basic idea
• Construct a planning graph: encodes

constraints on possible plans

• Use this planning graph to compute an
informative heuristic (Forward A*)

• Planning graph can be built for each problem
in polynomial time

© D. Weld, D. Fox 21

The Planning Graph

© D. Weld, D. Fox 22

…

…

…

level P0 level P1 level P2 level P3

level A1 level A2 level A3

Note: a few noops missing for clarity

Graph Expansion

© D. Weld, D. Fox 23

Proposition level 0

initial conditions

Action level i

no-op for each proposition at level i-1

action for each operator instance whose

preconditions exist at level i-1

Proposition level i

effects of each no-op and action at level i

…

…

…

i-1 i i+10

Mutual Exclusion

© D. Weld, D. Fox 24

Two actions are mutex if
• one clobbers the other’s effects or preconditions

• they have mutex preconditions

Two proposition are mutex if
•one is the negation of the other

•all ways of achieving them are mutex

p

p

p

p

p

p

Dinner Date

© D. Weld, D. Fox 25

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

(:operator carry :precondition

:effect (:and (noGarbage) (:not (cleanHands)))

(:operator dolly :precondition

:effect (:and (noGarbage) (:not (quiet)))

(:operator cook :precondition (cleanHands)

:effect (dinner))

(:operator wrap :precondition (quiet)

:effect (present))

Planning Graph

© D. Weld, D. Fox 26

noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Are there any exclusions?

© D. Weld, D. Fox 27

noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop

¬cleanH

¬quiet

Observation 1

© D. Weld, D. Fox 28

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

Observation 2

© D. Weld, D. Fox 29

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

Observation 3

© D. Weld, D. Fox 30

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…

Observation 4

© D. Weld, D. Fox 31

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

Observation 5

Planning Graph ‘levels off’.

• After some time k all levels are identical

• Because it’s a finite space, the set of literals
never decreases and mutexes don’t reappear.

© D. Weld, D. Fox 32

Properties of Planning Graph

• If goal is absent from last level

– Goal cannot be achieved!

• If there exists a path to goal

goal is present in the last level

• If goal is present in last level

there may not exist any path still

© D. Weld, D. Fox 33

Heuristics based on Planning Graph

• Construct planning graph starting from s

• h(s) = level at which goal appears non-mutex

– Admissible?

– YES

• Relaxed Planning Graph Heuristic

– Remove negative preconditions build plan. graph

– Use heuristic as above

– Admissible? YES

– More informative? NO

– Speed: FASTER

© D. Weld, D. Fox 34

FF

• Topmost classical planner until 2009

• State space local search

– Guided by relaxed planning graph

– Full bfs to escape plateaus – enforced hill climbing

– A few other bells and whistles…

© Mausam

SATPlan: Planning as SAT

• Formulate the planning problem as a CSP

• Assume that the plan has k actions

• Create a binary variable for each possible action a:

– Action(a,i) (TRUE if action a is used at step i)

• Create variables for each proposition that can hold at
different points in time:

– Proposition(p,i) (TRUE if proposition p holds at step i)

Constraints
• XOR: Only one action can be executed at each time step

• At least one action must be executed at each time step

• Constraints describing effects of actions

– Action(a,i)  prec(a,i-1); Action(a,i)  eff(a,i)

• Maintain action: if an action does not change a prop p,
then maintain action for proposition p is true

– Action(maint_p,i)  Action(a1,i) v Action(a2,i)… *for all ai that
don’t effect p+

• A proposition is true at step i only if some action
(possibly a maintain action) made it true

• Constraints for initial state and goal state

© Mausam

Popular Application

© Mausam

Planning Summary
 Problem solving algorithms that operate on explicit

propositional representations of states and actions.

 Make use of specific heuristics.

 STRIPS: restrictive propositional language

 State-space search: forward (progression) / backward
(regression) search

 Local search FF; using compilation into SAT

 Partial order planners search space of plans from goal to
start, adding actions to achieve goals (did not cover)

© D. Weld, D. Fox 39

