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Planning
• Given 

– a logical description of the initial situation,

– a logical description of the goal conditions, and

– a logical description of a set of possible actions,

• find 

– a sequence of actions (a plan of actions) that brings us 
from the initial situation to a situation in which the goal 
conditions hold.
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Example: BlocksWorld
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Planning Input: 
State Variables/Propositions

• Types: block --- a, b, c

• (on-table a) (on-table b) (on-table c)

• (clear a)  (clear b) (clear c) 

• (arm-empty) 

• (holding a) (holding b) (holding c)

• (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

• (on-table ?b); clear (?b) 

• (arm-empty); holding (?b)

• (on ?b1 ?b2)
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No. of state variables =16

No. of states = 216

No. of reachable states = ?



Planning Input: Actions
• pickup a b,  pickup a c, …

• place a b,  place a c, …

• pickup-table a, pickup-table b, …

• place-table a, place-table b, …
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• pickup ?b1 ?b2

• place ?b1 ?b2

• pickup-table ?b

• place-table ?b

Total: 6 + 6 + 3 + 3 = 18 “ground” actions

Total: 4 action schemata



Planning Input: Actions (contd)
• :action pickup ?b1 ?b2

:precondition

(on ?b1 ?b2)

(clear ?b1)

(arm-empty)

:effect

(holding ?b1) 

(not (on ?b1 ?b2))

(clear ?b2)

(not (arm-empty))
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• :action pickup-table ?b

:precondition

(on-table ?b)

(clear ?b)

(arm-empty)

:effect

(holding ?b) 

(not (on-table ?b))

(not (arm-empty))



Planning Input: Initial State

• (on-table a) (on-table b) 

• (arm-empty)

• (clear c) (clear b)

• (on c a)

• All other propositions false 
• not mentioned  false
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Planning Input: Goal

• (on-table c) AND (on b c) AND (on a b) 

• Is this a state?

• In planning a goal is a set of states
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Planning Input Representation

• Description of initial state of world

– Set of propositions

• Description of goal: i.e. set of worlds

– E.g., Logical conjunction

– Any world satisfying conjunction is a goal

• Description of available actions
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Planning vs. Problem-Solving
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Basic difference: Explicit, logic-based representation

• States/Situations: descriptions of the world by logical 
formulae 
 agent can explicitly reason about and communicate with 
the world.

• Goal conditions as logical formulae vs. goal test (black box)
 agent can reflect on its goals.

• Operators/Actions: Axioms or transformation on formulae in 
a logical form
 agent can gain information about the effects of actions by 
inspecting the operators.



Classical Planning

• Simplifying assumptions
– Atomic time
– Agent is omniscient (no sensing necessary). 
– Agent is sole cause of change
– Actions have deterministic effects

• STRIPS representation
– World = set of true propositions (conjunction)
– Actions: 

• Precondition: (conjunction of positive literals, no functions)
• Effects (conjunction of literals, no functions)

– Goal = conjunction of positive literals

– Is Blocks World in STRIPS?

– Goals = conjunctions (Rich ^ Famous)
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Planning as Search
• Forward Search in ? Space

– World State Space

– start from start state; look for a state with goal property

• dfs/bfs

• A*

• Backward Search in ? Space
– Subgoal Space

– start from goal conjunction; look for subgoal that holds in initial 
state

• dfs/bfs/A*

• Local Search in ? Space

– Plan Space 
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Forward World-Space Search
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Forward State-Space Search

• Initial state: set of positive ground literals (CWA: 
literals not appearing are false)

• Actions: 

– applicable if preconditions satisfied

– add positive effect literals

– remove negative effect literals

• Goal test: checks whether state satisfies goal

• Step cost: typically 1
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Heuristics for State-Space Search
• Count number of false goal propositions in current state

Admissible?

NO

• Subgoal independence assumption:
– Cost of solving conjunction is sum of cost of solving each subgoal

independently
– Optimistic: ignores negative interactions

– Pessimistic: ignores redundancy

– Admissible? No

– Can you make this admissible?
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Heuristics for State Space Search 
(contd)

• Delete all preconditions from actions, solve 
easy relaxed problem, use length

Admissible?

YES

• Delete negative effects from actions, solve 
easier relaxed problem, use length

Admissible?

YES (if Goal has only positive literals, true in 
STRIPS)

CSE 573

16



Backward Subgoal-Space Search 
• Regression planning

• Problem: Need to find predecessors of 
state

• Problem: Many possible goal states 
are equally acceptable.

• From which one does one search?
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Regression
• Let G be  a KR sentence (e.g. in logic)

• Relevance: needs to achieve one subgoal

• Consistency: does not undo any other subgoal
• Regressing a goal, G,  thru an action, A

yields the weakest precondition G’
– Such that: if G’ is true before A is executed
– G is guaranteed to be true afterwards
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Regression Example
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• :action pickup-table ?b

:precondition

(on-table ?b)

(clear ?b)

(arm-empty)

:effect

(holding ?b) 

(not (on-table ?b))

(not (arm-empty))
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(and (holding C) 
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(and (clear C) 
(on-table C) 
(arm-empty) 
(on A B))
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Complexity of Planning
• Size of Search Space

– Forward: size of world state space

– Backward: size of subsets of partial state space!

• Size of World state space

– exponential in problem representation

• What to do?

– Informative heuristic that can be computed in 
polynomial time!
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Planning Graph: Basic idea
• Construct a planning graph:  encodes 

constraints on possible plans

• Use this planning graph to compute an 
informative heuristic (Forward A*)

• Planning graph can be built for each problem 
in polynomial time
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The Planning Graph
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level P0 level P1 level P2 level P3

level A1 level A2 level A3

Note: a few noops missing for clarity



Graph Expansion
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Proposition level 0 

initial conditions

Action level i

no-op for each proposition at level i-1

action for each operator instance whose 

preconditions exist at level i-1

Proposition level i

effects of each no-op and action at level i

…

…

…

i-1 i i+10



Mutual Exclusion
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Two actions are mutex if
• one clobbers the other’s effects or preconditions

• they have mutex preconditions

Two proposition are mutex if
•one is the negation of the other 

•all ways of achieving them are mutex
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Dinner Date
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Initial Conditions:  (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

(:operator carry  :precondition 

:effect (:and (noGarbage) (:not (cleanHands)))

(:operator dolly   :precondition 

:effect (:and (noGarbage) (:not (quiet)))

(:operator cook   :precondition (cleanHands)

:effect (dinner))

(:operator wrap   :precondition (quiet)

:effect (present))



Planning Graph
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Are there any exclusions?
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Observation 1
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Propositions monotonically increase
(always carried forward by no-ops)
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Observation 2
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Actions monotonically increase
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Observation 3
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Proposition mutex relationships monotonically decrease
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Observation 4
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Action mutex relationships monotonically decrease
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Observation 5

Planning Graph ‘levels off’. 

• After some time k all levels are identical

• Because it’s a finite space, the set of literals 
never decreases and mutexes don’t reappear.
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Properties of Planning Graph

• If goal is absent from last level

– Goal cannot be achieved!

• If there exists a path to goal

goal is present in the last level

• If goal is present in last level

there may not exist any path still 
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Heuristics based on Planning Graph

• Construct planning graph starting from s

• h(s) = level at which goal appears non-mutex

– Admissible?

– YES 

• Relaxed Planning Graph Heuristic

– Remove negative preconditions build plan. graph

– Use heuristic as above

– Admissible? YES

– More informative? NO

– Speed: FASTER
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FF

• Topmost classical planner until 2009

• State space local search 

– Guided by relaxed planning graph

– Full bfs to escape plateaus – enforced hill climbing

– A few other bells and whistles…
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SATPlan: Planning as SAT

• Formulate the planning problem as a CSP

• Assume that the plan has k actions

• Create a binary variable for each possible action a:

– Action(a,i) (TRUE if action a is used at step i)

• Create variables for each proposition that can hold at 
different points in time:

– Proposition(p,i) (TRUE if proposition p holds at step i)



Constraints
• XOR: Only one action can be executed at each time step

• At least one action must be executed at each time step

• Constraints describing effects of actions

– Action(a,i)  prec(a,i-1); Action(a,i)  eff(a,i)

• Maintain action: if an action does not change a prop p, 
then maintain action for proposition p is true

– Action(maint_p,i)  Action(a1,i) v Action(a2,i)… *for all ai that 
don’t effect p+

• A proposition is true at step i only if some action 
(possibly a maintain action) made it true

• Constraints for initial state and goal state
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Popular Application
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Planning Summary
 Problem solving algorithms that operate on explicit 

propositional representations of states and actions.

 Make use of specific heuristics.

 STRIPS: restrictive propositional language

 State-space search: forward (progression) / backward 
(regression) search

 Local search FF; using compilation into SAT

 Partial order planners search space of plans from goal to 
start, adding actions to achieve goals (did not cover)
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