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Stochastic Planning: MDPs
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MDP vs. Decision Theory

• Decision theory – episodic

• MDP -- sequential



Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/

non-absorbing



Objective of an MDP

• Find a policy : S→ A

• which optimizes 

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.



Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics): 

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …



Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, Pr, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, Pr, R, >

• Most often studied in machine learning, economics, operations 
research communities

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, Pr, G, R, s0>

• Relatively recent model

most popular



AND/OR Acyclic Graphs vs. MDPs
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Expectimin works

• V(Q/R/S/T) = 1

• V(P) = 6 – action a

Expectimin doesn’t work

•infinite loop

• V(R/S/T) = 1

• Q(P,b) = 11

• Q(P,a) = ????

• suppose I decide to take a in P

• Q(P,a) = 5+ 0.4*1 + 0.6Q(P,a)

• = 13.5



Bellman Equations for MDP1

• <S, A, Pr, C, G, s0>

• Define J*(s) {optimal cost} as the minimum 

expected cost to reach a goal from this state.

• J* should satisfy the following equation:



Bellman Equations for MDP2

• <S, A, Pr, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:



Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)

• Backup Vn function at state s 

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)

V
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Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat

• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence



Comments

• Decision-theoretic Algorithm

• Dynamic Programming 

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

 Time Complexity

• one iteration: O(|S|2|A|) 

• number of iterations: poly(|S|, |A|, 1/(1-)) 

 Space Complexity: O(|S|)

 Factored MDPs = Planning under uncertainty

• exponential space, exponential time



Convergence Properties

• Vn → V* in the limit as n→1

• -convergence: Vn function is within  of V*

• Optimality: current policy is within 2/(1-) of optimal

• Monotonicity
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)

• otherwise Vn non-monotonic



Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.
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Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value



Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate

by value iteration 

using fixed policy

Modified 

Policy Iteration



Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic 

programming algorithm.



Applications

 Stochastic Games

 Robotics: navigation, helicopter manuevers…

 Finance: options, investments

 Communication Networks

 Medicine: Radiation planning for cancer

 Controlling workflows

 Optimize bidding decisions in auctions

 Traffic flow optimization

 Aircraft queueing for landing; airline meal provisioning

 Optimizing software on mobiles

 Forest firefighting

 …



Extensions

 Heuristic Search + Dynamic Programming

• AO*, LAO*, RTDP, …

 Factored MDPs

• add planning graph style heuristics

• use goal regression to generalize better

 Hierarchical MDPs

• hierarchy of sub-tasks, actions to scale better

 Reinforcement Learning

• learning the probability and rewards

• acting while learning – connections to psychology

 Partially Observable Markov Decision Processes

• noisy sensors; partially observable environment

• popular in robotics



Summary: Decision Making

 Classical planning

• sequential decision making in deterministic world

• domain independent heuristic generation

 Decision theory

• one step decision making under uncertainty

• value of information

• utility theory

 Markov Decision Process

• sequential decision making under uncertainty


