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MDP vs. Decision Theory
« Decisiontheory - episodic

« MDP -- sequential



Decision Process (MDP)
factored
/@\Set of StateSD Factored MDP
set of actio

Pr(s |s a\transition model
,a,5’).€0ost model

. absorbing/
G: setof goals > non-absorbing
* S,. start state
* v: discount factor
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Objective of an MDP

Finda policy: S— A

which optimizes

* minimizes (Jiscounted) €Xpected cost to reach a goal
* maximizes or expected reward

« maximizes (undiscount) expected (reward-cost)

givena___ horizon
 finite
* infinite
 indefinite

assuming full observability



Role of Discount Factor ()

Keep the total reward/total cost finite
« useful for infinite horizon problems

Intuition (economics):
* Money today is worth more than money tomorrow.

Total reward: ry + yr, + yr3 + ..
Total cost: ¢, + yc, + y%C5 + ...



Examples of MDPs

 Goal-directed, Indefinite Horizon, Cost Minimization MDP
* <Ss As Pra C! Gs SO>
* Most often studied in planning, graph theory communities

__Infinite Horizon, Discounted Reward Maximization M@‘\
* <5, A PR, most popular

* Most often studied in machine learning, economics, operations
research communities

« Oversubscription Planning: Non absorbing goals, Reward Max. MDP
¢ <S’ A’ Pr’ g! R, SO>
« Relatively recent model



AND/OR Acyclic Graphs vs. MDPs

C(a) =5, C(b) = 10, C(c) =1

Expectimin works
*V(Q/R/SIT) =1
*VV(P) =6 —action a

Expectimin doesn’t work
eInfinite loop

*V(R/S/T) =1

*Q(P,b)=11

*Q(P,a) = 77?7?

* suppose | decide to take ain P

*Q(P,a) =5+ 0.4*1 + 0.6Q(P,a)

= =135



Bellman Equations for MDP,

« <S§, A, Pr,C, G,s,>

« Define J*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« J* should satisfy the following equation:

0 s€¢g
min > Pr(s|s,a) {C(s,a,s’) + J*(s")

ac Ap(s) JeS




Bellman Equations for MDP,

° <S! A, ’PI’, R’ SO,Y>

* Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:




Bellman Backup (MDP,)

» Given an estimate of V* function (say V,)

« Backup V,, function at state s
» calculate a new estimate (V1)

> Pr(sls,a) R(s,a,s") +1\a(s")

s'eS

aX n ?
ae"plp(s) [Qn41(s,a)]

* Q,.1(s,a): value/cost of the strategy:
e execute action a in s, execute wt, subsequently
* W, = argmaXaEAp(s)Qn(Sva)



Bellman Backup

Qs(s,a)) =2 +0y

Qq(s,a,) =5+y0.9x 1
+vy0.1x 2

Qq(s,a;) =4.5+2y




Value iteration [Bellman’57]

 assign an arbitrary assignment of V, to each state.

e repeat
for all states s

lteration n+1
Bellman bac

« until max,{V, . (s)- V(s

Residual(s)

e-convergence



Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm
« for shortest path computation
 MDP; : Stochastic Shortest Path Problem

= Time Complexity
* one iteration: O(|S|?|.A|)
« number of iterations: poly(|S|, |A|, 1/(1-y))

= Space Complexity: O(|S])

= Factored MDPs = Planning under uncertainty
e exponential space, exponential time



Convergence Properties

V,— V*in the limit as h—oo
g-convergence: V_ function is within g of V*
Optimality: current policy is within 2gy/(1—y) of optimal

Monotonicity
c V<V =V, < VE (V,, monotonic from below)
« Vo> V =2V, > V* (V, monotonic from above)
 otherwise V, hon-monotonic



Policy Computation

argmax Q*(s,a
CLEAp(S)Q ( )

argmax Y Pr(s'ls,a) [’R,(s,a,,s') 4y V*(s")
acAp(s) deS

Policy Evaluation

A system of linear equations in |S| variables.



Changing the Search Space

* Value lteration
« Search in value space
« Compute the resulting policy

* Policy lteration
« Search in policy space
« Compute the resulting value



Policy iteration [Howard’60]

« assign an arbitrary assignment of r, to each state.

* repe - costly: O(n3)
. licy Evalua@:ompute V., .4: the evaluation of &, T

* Policy Improvement: for all states s
* compute m,.1(S): argmaXae aps)Qn+1(S,a)

©untilmy,y =m, Modified
Policy Iteration

approximate
> Py value iteration
using fixed policy

Advantage

e searching in a finite (policy) space as opposed to
uncountably infinite (value) space = convergence faster.

 all other properties follow!



Modified Policy iteration

 assign an arbitrary assignment of n, to each state.

* repeat
» Policy Evaluation: compute V., the approx. evaluation of &,
* Policy Improvement: for all states s
* compute m,.1(S): argmaXae aps)Qn+1(S,a)

Advantage

* probably the most competitive synchronous dynamic
programming algorithm.



Applications

= Stochastic Games

= Robotics: navigation, helicopter manuevers...
* Finance: options, investments

= Communication Networks

» Medicine: Radiation planning for cancer

= Controlling workflows

= Optimize bidding decisions in auctions

» Traffic flow optimization

= Aircraft queueing for landing; airline meal provisioning
= Optimizing software on mobiles

» Forest firefighting



Extensions

» Heuristic Search + Dynamic Programming
« AO* LAO*, RTDP, ..

= Factored MDPs
« add planning graph style heuristics
« use goal regression to generalize better

= Hierarchical MDPs
 hierarchy of sub-tasks, actions to scale better

= ReinforcementLearning
 learning the probability and rewards
 acting while learning - connections to psychology

= Partially Observable Markov Decision Processes
* noisy sensors; partially observable environment
e popularin robotics



Summary: Decision Making

= Classical planning
» sequential decision making in deterministic world
« domain independent heuristic generation

= Decision theory
* one step decision making under uncertainty
* value of information
* utility theory

= Markov Decision Process
« sequential decision making under uncertainty



