Markov Decision Processes Chapter 17

Mausam

MDP vs. Decision Theory

- Decision theory episodic
- MDP -- sequential

Objective of an MDP

- Find a policy $\pi: \mathcal{S} \to \mathcal{A}$
- which optimizes
 - minimizes (discounted) expected cost to reach a goal
 - maximizes or expected reward
 - maximizes [undiscount.] expected (reward-cost)
- given a _____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $\mathbf{r}_1 + \gamma \mathbf{r}_2 + \gamma^2 \mathbf{r}_3 + \dots$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + ...$

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP ٠
 - $<\mathcal{S}, \mathcal{A}, \mathcal{P}r, \mathcal{C}, \mathcal{G}, s_0 >$
 - Most often studied in planning, graph theory communities

Infinite Horizon, Discounted Reward Maximization MDP

- $< S, A, Pr, R, \gamma >$
- most popular Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP ۲
 - $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}r, \mathcal{G}, \mathcal{R}, s_0 \rangle$
 - Relatively recent model

AND/OR Acyclic Graphs vs. MDPs

C(a) = 5, C(b) = 10, C(c) =1

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

- Expectimin doesn't work •infinite loop
- V(R/S/T) = 1
- Q(P,b) = 11
- Q(P,a) = ????
- suppose I decide to take a in P
- Q(P,a) = 5 + 0.4 * 1 + 0.6Q(P,a)
- •**→** = 13.5

Bellman Equations for MDP₁

- $<\mathcal{S}, \mathcal{A}, \mathcal{P}r, \mathcal{C}, \mathcal{G}, s_0 >$
- Define J*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- J* should satisfy the following equation:

$$J^*(s) = 0 \text{ if } s \in \mathcal{G}$$

$$J^*(s) = \min_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathcal{C}(s,a,s') + J^*(s') \right]$$

Bellman Equations for MDP₂

- <S, A, Pr, R, s_{0} , γ >
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in S} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^*(s') \right]$$

Bellman Backup (MDP₂)

- Given an estimate of V* function (say V_n)
- Backup V_n function at state s
 - calculate a new estimate (V_{n+1}) :

$$Q_{n+1}(s,a) = \sum_{s' \in S} Pr(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V_n(s') \right]$$

$$V_{n+1}(s) = \max_{a \in Ap(s)} \left[Q_{n+1}(s,a) \right]$$

- Q_{n+1}(s,a) : value/cost of the strategy:
 - execute action a in s, execute π_n subsequently
 - $\pi_n = \operatorname{argmax}_{a \in Ap(s)} Q_n(s,a)$

Bellman Backup

$$\begin{array}{l} Q_1(s,a_1) = 2 + 0 \ \gamma \\ Q_1(s,a_2) = 5 + \gamma \ 0.9 \times \ 1 \\ + \gamma \ 0.1 \times \ 2 \\ Q_1(s,a_3) = 4.5 + 2 \ \gamma \end{array}$$

Value iteration [Bellman'57]

assign an arbitrary assignment of V₀ to each state.

Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
 - for shortest path computation
 - MDP₁: Stochastic Shortest Path Problem
- Time Complexity
 - one iteration: $O(|S|^2|A|)$
 - number of iterations: $poly(|S|, |A|, 1/(1-\gamma))$
- Space Complexity: O(|S|)
- Factored MDPs = Planning under uncertainty
 - exponential space, exponential time

Convergence Properties

- $V_n \rightarrow V^*$ in the limit as $n \rightarrow \infty$
- ϵ -convergence: V_n function is within ϵ of V^*
- Optimality: current policy is within $2\epsilon\gamma/(1-\gamma)$ of optimal
- Monotonicity
 - $V_0 \leq_p V^* \Rightarrow V_n \leq_p V^*$ (V_n monotonic from below)
 - $V_0 \ge_p V^* \Rightarrow V_n \ge_p V^*$ (V_n monotonic from above)
 - otherwise V_n non-monotonic

Policy Computation

$$\pi^{*}(s) = \underset{a \in Ap(s)}{\operatorname{argmax}} Q^{*}(s, a)$$

=
$$\underset{a \in Ap(s)}{\operatorname{argmax}} \sum_{s' \in S} \mathcal{P}r(s'|s, a) \left[\mathcal{R}(s, a, s') + \gamma V^{*}(s') \right]$$

Policy Evaluation

$$V_{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, \pi(s)) \left[\mathcal{R}(s, \pi(s), s') + \gamma V_{\pi}(s') \right]$$

A system of linear equations in |S| variables.

Changing the Search Space

- Value Iteration
 - Search in value space
 - Compute the resulting policy
- Policy Iteration
 - Search in policy space
 - Compute the resulting value

Policy iteration [Howard'60]

• assign an arbitrary assignment of π_0 to each state.

- searching in a finite (policy) space as opposed to uncountably infinite (value) space ⇒ convergence faster.
- all other properties follow!

Modified Policy iteration

- assign an arbitrary assignment of π_0 to each state.
- repeat
 - Policy Evaluation: compute V_{n+1} the *approx.* evaluation of π_n
 - Policy Improvement: for all states s
 - compute $\pi_{n+1}(s)$: argmax_{a \in Ap(s)}Q_{n+1}(s,a)
- until $\pi_{n+1} = \pi_n$

Advantage

 probably the most competitive synchronous dynamic programming algorithm.

Applications

- Stochastic Games
- Robotics: navigation, helicopter manuevers...
- Finance: options, investments
- Communication Networks
- Medicine: Radiation planning for cancer
- Controlling workflows
- Optimize bidding decisions in auctions
- Traffic flow optimization
- Aircraft queueing for landing; airline meal provisioning
- Optimizing software on mobiles
- Forest firefighting

Extensions

- Heuristic Search + Dynamic Programming
 - AO*, LAO*, RTDP, ...
- Factored MDPs
 - add planning graph style heuristics
 - use goal regression to generalize better
- Hierarchical MDPs
 - hierarchy of sub-tasks, actions to scale better
- Reinforcement Learning
 - learning the probability and rewards
 - acting while learning connections to psychology
- Partially Observable Markov Decision Processes
 - noisy sensors; partially observable environment
 - popular in robotics

Summary: Decision Making

- Classical planning
 - sequential decision making in deterministic world
 - domain independent heuristic generation
- Decision theory
 - one step decision making under uncertainty
 - value of information
 - utility theory
- Markov Decision Process
 - sequential decision making under uncertainty