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Bayes Nets

*In general, joint distribution P over set of
variables (X7 x ... x X,;) requires exponential
space for representation & inference

*BNs provide a graphical representation of
conditionalindependence relations in P

—usually quite compact

—requires assessment of fewer parameters, those
being quite natural (e.g., causal)

—efficient (usually) inference: query answering and
belief update



Back at the dentist’s

Topology of network encodes
conditional independence assertions:

CEDEED

Weather is independent of the other variables

Toothache and Catch are conditionally independent of each
other given Cavity



Syntax

* aset of nodes, one per random variable
* adirected, acyclic graph (link ="directly influences")

e aconditional distribution for each node given its
parents: P (X, | Parents (X))

— Fordiscrete variables, conditional probability table (CPT)=
distribution over X. for each combination of parent values



Burglars and Earthquakes

You are at a “Done with the Al class” party.

Neighbor John calls to say your home alarm has gone off (but
neighbor Mary doesn't).

Sometimes your alarm is set off by minor earthquakes.
Question:Is your home being burglarized?
Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal” knowledge:
— Aburglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— Thealarm can cause John to call



Burglars and Earthquakes
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Earthquake

Earthquake Example
(cont’d)

* If we know Alarm, no other evidence influences our
degree of belief in JohnCalls

— P(JC/IMC,A,E,B) = P(JC[A)

—also: P(MC|JC,A,E,B) = P(MC|A)and P(E[B) = P(E)
* By the chain rule we have

P(JC_MC,AE,B) = P(JC/|MC,A,E,B) -P(MC|A,E,B)-

P(A|E,B) -P(E[B)-P(B)
=P(JC|A) -P(MC|A) -P(A|B,E) -P(E) -P(B)

* Full joint requires only 10 parameters (cf. 32)



Earthquake

Earthqguake Example
(Global Semantics)

* We just proved
P(JC,MC,A,E,B) = P(JC|A) -P(MC[A) -P(A|B,E) -P(E) -P(B)
* In general full joint distribution of a Bayes net is defined as

P(X1, X2,..., Xn) = H P(Xi | Par (X))



BNs: Qualitative Structure

* Graphical structure of BN ref
independence among variab

ects conditional
es

e Each variable Xisanode int

* Edges denote direct probabil
— usually interpreted causally

ne DAG
istic influence

— parents of X are denoted Par(X)

* Local semantics: X is conditionally independent of all

nondescendents given its parents

— Graphical test exists for more
— “Markov Blanket”

general independence



Given Parents, X is Independent of
Non-Descendants

«@D. Weld and D. Fox
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Examples

@thqu@ Burglary




For Example
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For Example




For Example
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For Example




Given Markov Blanket, X is Independent of
All Other Nodes

MB(X) = Par(X) u Childs(X) u Par'(Chllds(X))

@ D. Weld and D. Fox



For Example
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For Example
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Bayes Net Construction Example

Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)?

«@D. Weld and D. Fox
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Example

Suppose we choose the ordering M, J, A, B, E

No
PA[J M)=P(A][1)? P(A[]M)?P(A)?

«@D. Weld and D. Fox
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Example

Suppose we choose the ordering M, J, A, B, E
arycais)

\ =
(Ram)
P(J| M)=P(J)?
No
PAlJ M)=P(A[J1)?P(A]J, M)=P(A)? No
PB|A J, M)=P(B|[A)?
P(B | A, J, M)=P(B)?



Example

Suppose we choose the ordering M, J, A, B, E

P(J| M)=P()?
No

PA[J M)=PA[IJ)?PA]J M)=P(A)? No
PB|A J,M)=P(B|[A)?Yes

P(B| A, J, M)=P(B)? No

P(E|B,A,l, M)=P(E [ A)?

P(E|B, A J,M)=P(E | A B)?




Example

Suppose we choose the ordering M, J, A, B, E

P(J| M)=P(J)?
No

PAlJ M)=PA[IJ)?PA][|J M)=P(A)? No
PB[A J,M)=P(B|[A)?Yes

P(B[ A, J, M)=P(B)? No

P(E| B, A,J, M)=P(E | A)? No

P(E| B, A J, M)=P(E | A B)? Yes




Example contd.

Burga

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Network is less compact: 1 + 2 +4 + 2 + 4 = 13 numbers needed

«@D. Weld and D. Fox
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Example: Car Diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters




Example: Car Insurance



Compact Conditionals

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents( X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian Vv US VvV Mezxican

E.g., numerical relationships among continuous variables
d Level

= T inflow + precipitation - outflow - evaporation
at



Compact Conditionals

Noisy-OR distributions model multiple noninteracting causes
1) Parents U, .. .U} include all causes (can add leak node)
2) Independent failure probability g; for each cause alone

= P(X|Uy...U;,~Ujyy...—Up)=1-1I)_q

Cold Flu Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F i} 0.9 0.1

F i) F 0.8 0.2

F i i (.08 0.02= 0.2 x 0.1

T F F 0.4 0.6

E F i & 0.94 0.06 = 0.6 x 0.1

T i i F 0.88 0.12= 0.6 x 0.2

i i1 T (.988 0012 =0.6x 02 x0.1

Number of parameters linear in number of parents




Hybrid (discrete+cont) Networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

subsidy? | (arves
Ceost>

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)



1: Continuous Child Variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.

P(Cost=c|Harvest =h, Subsidy?=true)
= N(ah + b;,04)(c)

1 1(c— (a;h + b))
— .“—E.'Tp —-3 Ut




2 Discrete child — cont. parents

Probability of Buys? given C'ost should be a “soft” threshold:
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Probit distribution uses integral of Gaussian:
®(z)= £, N(0,1)(x)dz
P(Buys?=true | Cost =c) = ®((—c+ u) /o)



Why probit?

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise
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Sigmoid Function

Sigmoid (or logit) distribution also used in neural networks:
1

1+ exp( —2%” )

P(Buys?’=true | Cost =c) =

Sigmoid has similar shape to probit but much longer tails:
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Inference in BNs

*The graphical independence representation

—vyields efficient inference schemes

*We generally want to compute
—Marginal probability: Pr(Z),
—Pr(Z|E) where E is (conjunctive) evidence
e Z: query variable(s),
e E:evidence variable(s)

* everythingelse: hidden variable

e Computations organized by network topology



P(B | J=true, M=true)

@’rhqu@ Burglary
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(aryca

P(blj.m) = o T P(b.j.m.e.a)

'
«@D. Weld and D. Fox




P(B | J=true, M=true)

@thu@ Burglary

P(blj,m) = aP(b) %P(e) %P(a\ b,e)P(jla)P(m|a)

«@D. Weld and D. Fox



Variable Elimination
P(blj.m) = aP(b) 2P(e) 2.P(alb,e)P(jla)P(m,a)

P(ulb,e) F(—ulb,e) P(ulb,—e) P(—ulb—e)
95 .05 94 06
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90 P(jlma) P(jla) P(jl ma)
: 05 90 05
)) @) @) O
5’?;”' ) P(ml = u) P(mlu) P(ml =)
.01 70 01
O @) @) O

Repeated computations =» Dynamic Progmmmmg

«@D. Weld and D. Fox



Variable Elimination

*A factor is a function from some set of variables
into a specific value: e.g., f(E,A,N1)
—CPTs are factors, e.g., P(A/E,B) function of A,E,B

*VE works by eliminating all variables in turn until

there is a factor wit

*To eliminate a varia

N only query variable

ole:

—join all factors containing that variable (like DB)

—sum out the influence of the variable on new factor

—exploits product form of joint distribution



P(J)

Example of VE: P(JC)

=Yy age PU;M,A,B,E)

= ZM,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E)

=%,P(J
=%,P(J
=3,P(J
=%,P(J
= f4(J)

A) =, P(M
A) =, P(M
A) Z,P(M
A) f3(A)

A) Z.P(B) Z:P(A|B,E)P(E) =
A) Z.P(B) f1(A,B) /

A) f2(A) @ @

«@D. Weld and D. Fox -39



Notes on VE

*Each operation is a simple multiplication of factors
and summing out a variable

* Complexity determined by size of largest factor
—in our example, 3 vars (not 5)
—linear in number of vars,

—exponential in largest factor elimination ordering greatly
impacts factor size

—optimal elimination orderings: NP-hard
—heuristics, special structure (e.g., polytrees)

*Practically, inference is much more tractable using
structure of this sort



P(J)

Irrelevant variables

Earthquake

=Yy age PU;M,A,B,E)

= 2y a8t PJIA)P(B)P(A|B,E)P(E)P(M|A)

=%,P(J
=%,P(J
=3,P(J
=%,P(J
= 3(J)

A) X;P(B) Z:P(A|B,E)P(E) EZMP(Ml A)

A) Z.P(B) Z.P(A|B,E)P(E)
A) Z.P(B) f(A,B)
A) £2(A)

M is irrelevant to the computation
Thm: Y is irrelevant unless Y € Ancestors(Z U E)



Reducing 3-SAT to Bayes Nets

Theorem: Inference 1in a multi-connected
Bayesian network 1s NP-hard.

Boolean 3CNF formula ¢= (uv vv wiA (v w v y)
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& Jack Breese (Microzoft) & Daphine Koller (Stanford)
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Complexity of Exact Inference

e Exact inference is NP hard
— 3-SAT to Bayes Net Inference

— |t can count no. of assignments for 3-SAT: #P complete

* Inference in tree-structured Bayesian network
— Polynomial time
— compare with inference in CSPs

* Approximate Inference
— Sampling based techniques



