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Bayes Nets
•In general, joint distribution P over set of 

variables (X1 x ... x Xn) requires exponential 

space for representation & inference

•BNs provide a graphical representation of 

conditional independence relations in P

–usually quite compact

–requires assessment of fewer parameters, those 
being quite natural (e.g., causal)

–efficient (usually) inference: query answering and 
belief update
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Back at the dentist’s

Topology of network encodes 
conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent of each 
other given Cavity



Syntax

• a set of nodes, one per random variable

• a directed, acyclic graph (link ≈"directly influences")

• a conditional distribution for each node given its 
parents: P (Xi | Parents (Xi))

– For discrete variables, conditional probability table (CPT)= 
distribution over Xi for each combination of parent values



Burglars and Earthquakes

• You are at a “Done with the AI class” party.

• Neighbor John calls to say your home alarm has gone off (but 
neighbor Mary doesn't). 

• Sometimes your alarm is set off by minor earthquakes.

• Question: Is your home being burglarized?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call



Burglars and Earthquakes
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

Pr(B=t) Pr(B=f)
0.001   0.999

Pr(A|E,B)
e,b    0.95 (0.05)

e,b    0.29 (0.71)
e,b    0.94 (0.06)

e,b    0.001 (0.999)                 

Pr(JC|A)
a   0.9 (0.1)

a  0.05 (0.95)

Pr(MC|A)
a   0.7 (0.3)

a  0.01 (0.99)

Pr(E=t) Pr(E=f)
0.002   0.998



Earthquake Example 
(cont’d)

• If we know Alarm, no other evidence influences our 
degree of belief in JohnCalls

– P(JC|MC,A,E,B) = P(JC|A)

– also: P(MC|JC,A,E,B) = P(MC|A) and P(E|B) = P(E)

•By the chain rule we have

P(JC,MC,A,E,B) = P(JC|MC,A,E,B) ·P(MC|A,E,B)·

P(A|E,B) ·P(E|B) ·P(B)

= P(JC|A) ·P(MC|A) ·P(A|B,E) ·P(E) ·P(B)

•Full joint requires only 10 parameters (cf. 32)
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Alarm

MaryCallsJohnCalls



Earthquake Example 
(Global Semantics)

•We just proved

P(JC,MC,A,E,B) = P(JC|A) ·P(MC|A) ·P(A|B,E) ·P(E) ·P(B)

• In general full joint distribution of a Bayes net is defined as
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BNs: Qualitative Structure
•Graphical structure of BN reflects conditional 

independence among variables

•Each variable X is a node in the DAG

•Edges denote direct probabilistic influence
– usually interpreted causally

– parents of X are denoted Par(X)

• Local semantics: X is conditionally independent of all 

nondescendents given its parents

– Graphical test exists for more general independence

– “Markov Blanket”
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Given Parents, X is Independent of 
Non-Descendants
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Examples
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For Example
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For Example
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For Example
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For Example
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Given Markov Blanket, X is Independent of 
All Other Nodes
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MB(X) = Par(X)  Childs(X)  Par(Childs(X))



For Example
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For Example
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Bayes Net Construction Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | M)? P(A)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? 

P(B | A, J, M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)? No

P(E | B, A, J, M) = P(E | A, B)? Yes
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Example contd.

• Deciding conditional independence is hard in noncausal directions

• (Causal models and conditional independence seem hardwired for humans!)

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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Example: Car Diagnosis



Example: Car Insurance



Compact Conditionals



Compact Conditionals



Hybrid (discrete+cont) Networks



#1: Continuous Child Variables



#2 Discrete child – cont. parents



Why probit?



Sigmoid Function



Inference in BNs
•The graphical independence representation

–yields efficient inference schemes

•We generally want to compute 

–Marginal probability: Pr(Z),

–Pr(Z|E) where E is (conjunctive) evidence

• Z: query variable(s), 

• E: evidence variable(s)

• everything else: hidden variable

•Computations organized by network topology
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P(B | J=true, M=true)
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a



P(B | J=true, M=true)
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Earthquake Burglary

Alarm

MaryCallsJohnCalls

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a)
e              a



Variable Elimination
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P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)
e              a

Repeated computations  Dynamic Programming



Variable Elimination
•A factor is a function from some set of variables 
into a specific value: e.g., f(E,A,N1)

–CPTs are factors, e.g., P(A|E,B) function of A,E,B

•VE works by eliminating all variables in turn until 

there is a factor with only query variable

•To eliminate a variable:

– join all factors containing that variable (like DB)

–sum out the influence of the variable on new factor

–exploits product form of joint distribution
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Example of VE: P(JC)
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Earthqk Burgl

Alarm

MCJC

P(J)

= M,A,B,E P(J,M,A,B,E) 

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E)

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E)

= AP(J|A) MP(M|A) BP(B) f1(A,B)

= AP(J|A) MP(M|A) f2(A)

= AP(J|A) f3(A)

= f4(J)



Notes on VE

•Each operation is a simple multiplication of factors 
and summing out a variable

•Complexity determined by size of largest factor

– in our example, 3 vars (not 5)

– linear in number of vars, 

–exponential in largest factor elimination ordering greatly 
impacts factor size

–optimal elimination orderings: NP-hard

–heuristics, special structure (e.g., polytrees) 

•Practically, inference is much more tractable using 
structure of this sort •© D. Weld and D. Fox •40



Irrelevant variables
Earthquake Burglary

Alarm

MaryCallsJohnCallsP(J)

= M,A,B,E P(J,M,A,B,E) 

= M,A,B,E P(J|A)P(B)P(A|B,E)P(E)P(M|A)

= AP(J|A) BP(B) EP(A|B,E)P(E) MP(M|A) 

= AP(J|A) BP(B) EP(A|B,E)P(E)

= AP(J|A) BP(B) f1(A,B)

= AP(J|A) f2(A)

= f3(J) M is irrelevant to the computation
Thm: Y is irrelevant unless Y ϵ Ancestors(Z U E)



Reducing 3-SAT to Bayes Nets



Complexity of Exact Inference

• Exact inference is NP hard

– 3-SAT to Bayes Net Inference

– It can count no. of assignments for 3-SAT: #P complete

• Inference in tree-structured Bayesian network 

– Polynomial time

– compare with inference in CSPs

• Approximate Inference

– Sampling based techniques


