Learning in Bayes Nets
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Parameter Estimation

* Learn all the CPTs in a Bayesian Net

* Key idea: counting!

© Mausam



Burglars and Earthquakes
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Earthquake

Counting
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Earthquake

Counting
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Counting
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Earthquake

Counting
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Earthquake

Counting
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Badidea to have probasOor 1
* stumps Gibbs sampling
* low prob states become impossible




Solution: Smoothing

Why?
— To deal with events observed zero times.
— “event”:a particular ngram

How?

— To shave a little bit of probability mass from the higher
counts, and pile it instead on the zero counts

Laplace Smoothing/Add-one smoothing
— assume each event was observed at least once.
— add 1 to all frequency counts

Add m instead of 1 (m could be >or< 1)



Earthquake

Counting w/ Smoothing
E B A

0 0 0 1000+1
0 0 1 10+1

0 1 0 20+1

0 1 1 100+1
1 0 0 200+1
1 0 1 50+1

1 1 0 0+1

1 1 1 5+1

11




ML vs. MAP Learning

 ML: maximum likelihood (what we just did)
— find parameters that maximize the prob of seeing the data D
— argmaxg, P(D| 0)
— easy to compute (for example, just counting)

— assume uniform prior

e Prior: your belief before seeing any data
— Uniform prior: all parameters equally likely

* MAP: maximum a posteriori estimate
— maximize prob of parameters after seeing data D
— argmaxg P(0| D) = argmax, P(D|6)P(0)
— allows user to input additional domain knowledge
— better parameters when data is sparse...
— reduces to ML when infinite data



Learning the Structure

* Problem: learn the structure of Bayes nets

* Search thru the space...
— of possible network structures!
— Heuristic search/local search

* For each structure, learn parameters

 Pick the one that fits observed data best
— Caveat—won’t we end up fully connected????

When scoring, add a penalty
oC model complexity



Local Search




How to learn when some data missing?

* Expectation Maximization (EM)
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Examples: 0 1 1

1 0 0

1 1 1

1 ? 0
Initialization: P(B|A) = P(C|B) =
P(A) = P(B|-A) = P(C|-B) =
E-step: P(?=1) = P(B|4,~C) = S22 = =0
M-step: P(B|A) = P(C|B) =
P(A) = P(B|-A) = P(C|-B) =

E-step: P(7=1) =



Chicken & Egg Problem

* |f we knew the missing value
— |t would be easy to learn CPT

e If we knew the CPT
— Then it’d be easy to infer the (probability of) missing value

e But we do not know either!

Slide by Daniel S. Weld
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Examples: 0 1 1

1 0 0

1 1 1

1 ? 0
Initialization: P(B|A) =0 P(C|B)=0
P(A) =0.75 P(B|-A)=0 P(C|-B)=0
E-step: P(?=1) = P(B|A,~C) = S2) = =0
M-step: P(B|A) = P(C|B) =
pP(4) = P(B|-4) = P(C|-B) =

E-step: P(7=1) =
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Examples: 0 1 1

1 0 0

1 1 1

1 v 0
Initialization: P(B|A) =0 P(C|B)=0
P(A) =0.75 P(B|—-A) =0 P(C|-B)=0
E-step: P(?=1) = P(B|A,~C) = S2) = =0
M-step: P(B|A) =0.33 P(C|B)=1

E-step: P(7=1) =
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Expectation Maximization

Guess probabilities for nodes with missing values
(e.g., based on other observations)

Compute the probability distribution over the
missing values, given our guess

Update the probabilities based on the guessed
values

Repeat until convergence

Guaranteed to converge to local optimum



Learning Summary

Known structure, fully observable: only need to do
parameter estimation

Unknown structure, fully observable: do heuristic/local
search through structure space, then parameter estimation

Known structure, missing values: use expectation
maximization (EM) to estimate parameters

Known structure, hidden variables: apply adaptive
probabilistic network (APN) techniques

Unknown structure, hidden variables: too hard to solve!



Other Graphical Models

* Directed
— Bayesian Networks

* Undirected
— Markov Network (Markov Random Field)
— BN = MN (moralization: marry all co-parents)

* Mixed
— Chain Graph



Other Graphical Models
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