Learning in Bayes Nets

Mausam

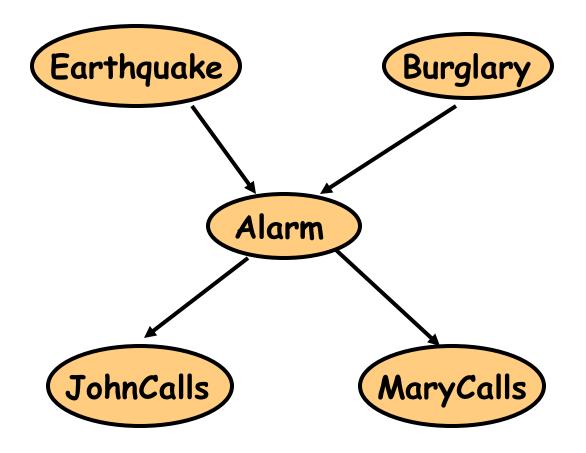
(Based on slides by Stuart Russell, Marie desJardins, Dan Weld)

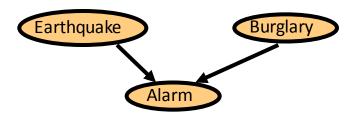
Parameter Estimation

• Learn all the CPTs in a Bayesian Net

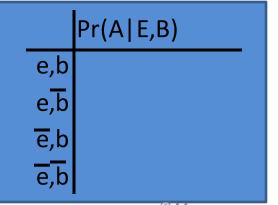
• Key idea: counting!

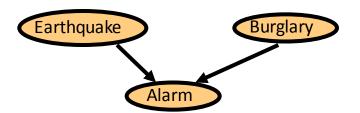
Burglars and Earthquakes



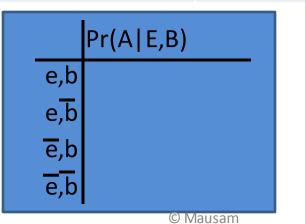


E	В	Α	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

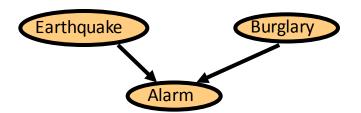




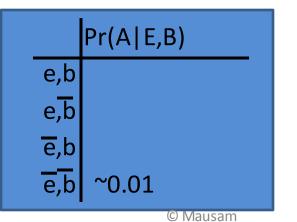
E	В	А	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5



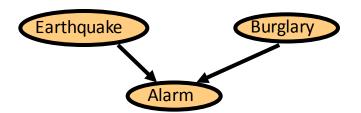
 $P(a | \overline{e, b}) = ?$ = 10/1010



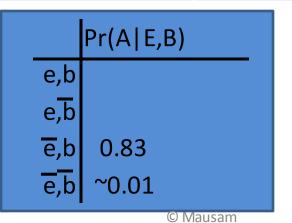
E	В	А	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

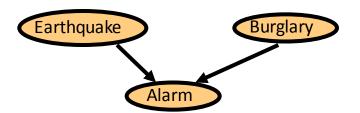


P(a | e, b) = ? = 100/120



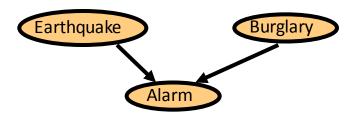
E	В	А	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5





E	В	А	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

P(a|e,b) = ? = 5/5



E	В	Α	#
0	0	0	1000
0	0	1	10
0	1	0	20
0	1	1	100
1	0	0	200
1	0	1	50
1	1	0	0
1	1	1	5

	Pr(A E,B)
e,b	1
e,b	0.2
ē,b	0.83
e,b	~0.01

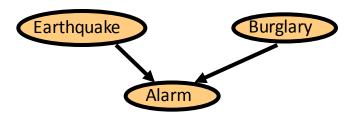
Bad idea to have prob as 0 or 1stumps Gibbs sampling

• low prob states become impossible

Solution: Smoothing

- Why?
 - To deal with events observed zero times.
 - "event": a particular ngram
- How?
 - To shave a little bit of probability mass from the higher counts, and pile it instead on the zero counts
- Laplace Smoothing/Add-one smoothing

 assume each event was observed at least once.
 add 1 to all frequency counts
- Add m instead of 1 (m could be > or < 1)



Counting w/ Smoothing

E	В	Α	#
0	0	0	1000+1
0	0	1	10+1
0	1	0	20+1
0	1	1	100+1
1	0	0	200+1
1	0	1	50+1
1	1	0	0+1
1	1	1	5+1

Pr(A E,B)	
e,b	0.86
e,b	~0.2
ē,b	~0.83
e,b	~0.01

ML vs. MAP Learning

- ML: maximum likelihood (what we just did)
 - find parameters that maximize the prob of seeing the data D
 - $\operatorname{argmax}_{\theta} P(D \mid \theta)$
 - easy to compute (for example, just counting)
 - assume uniform prior
- Prior: your belief before seeing any data
 - Uniform prior: all parameters equally likely
- MAP: maximum a posteriori estimate
 - maximize prob of parameters after seeing data D
 - $\operatorname{argmax}_{\theta} P(\theta | D) = \operatorname{argmax}_{\theta} P(D | \theta) P(\theta)$
 - allows user to input additional domain knowledge
 - better parameters when data is sparse...
 - reduces to ML when infinite data

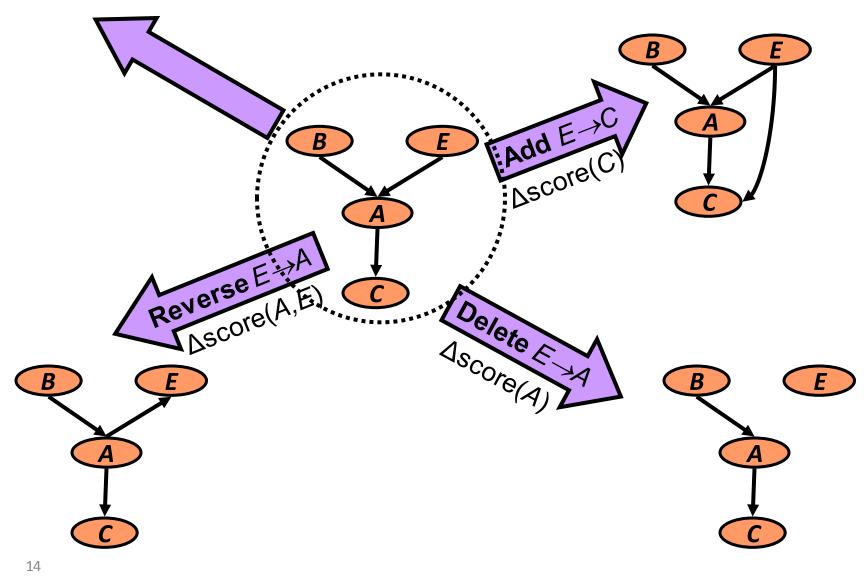
Learning the Structure

- Problem: learn the structure of Bayes nets
- Search thru the space...
 - of possible network structures!
 - Heuristic search/local search
- For each structure, learn parameters
- Pick the one that fits observed data best

– Caveat – won't we end up fully connected????

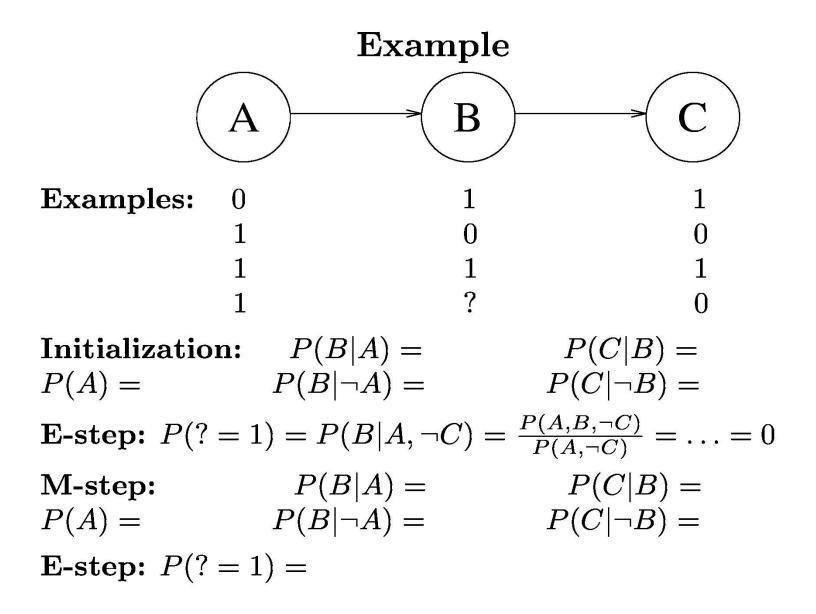
When scoring, add a penalty ∞ model complexity

Local Search



How to learn when some data missing?

• Expectation Maximization (EM)



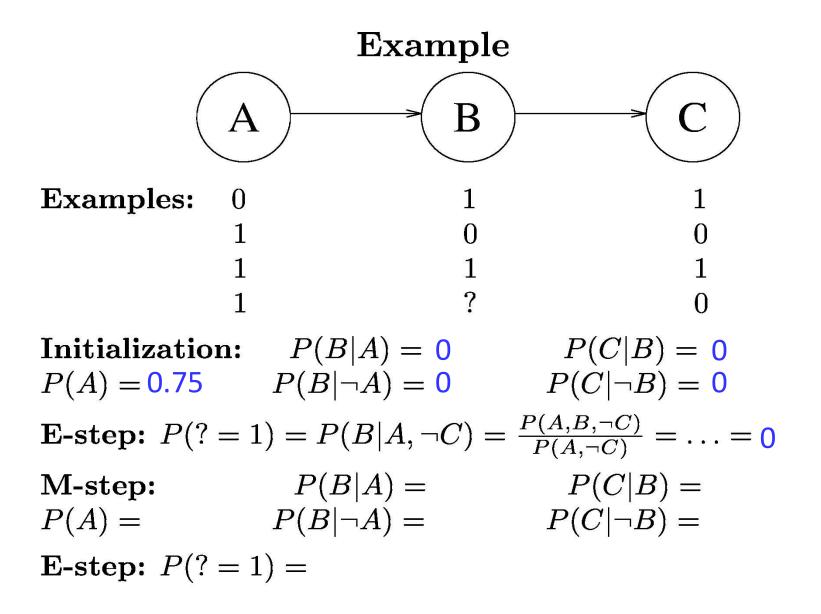
Chicken & Egg Problem

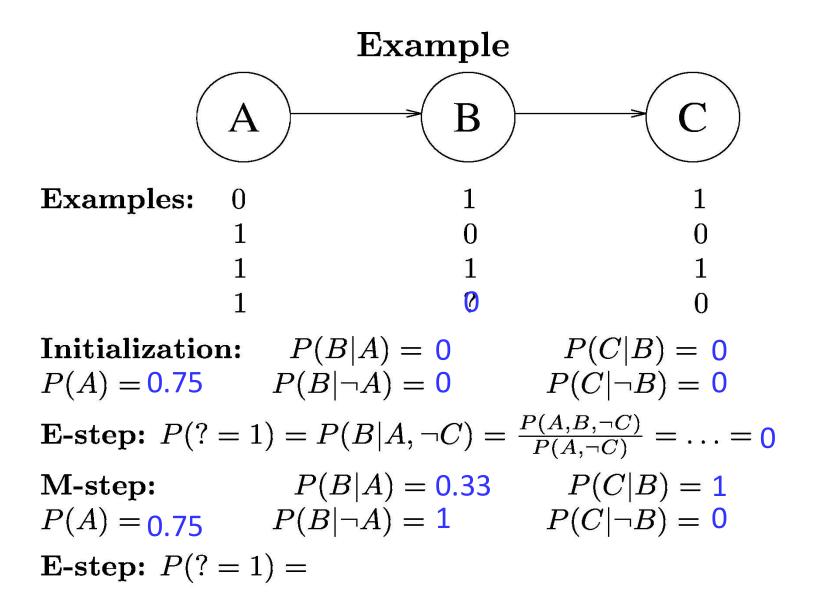
- If we knew the missing value
 - It would be easy to learn CPT

- If we knew the CPT
 - Then it'd be easy to infer the (probability of) missing value

• But we do not know either!

17





Expectation Maximization

- Guess probabilities for nodes with missing values (e.g., based on other observations)
- Compute the probability distribution over the missing values, given our guess
- Update the probabilities based on the guessed values
- **Repeat** until convergence

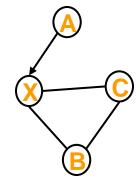
• Guaranteed to converge to local optimum

Learning Summary

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic/local search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Other Graphical Models

- Directed
 - Bayesian Networks
- Undirected
 - Markov Network (Markov Random Field)
 - $-BN \rightarrow MN$ (moralization: marry all co-parents)
- Mixed
 - Chain Graph



Other Graphical Models

