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Temporal Models

* Graphical models with a temporal component

» S./X, = set of unobservable variables at time t

* WY, =set of evidence variables at time t

* Notation X_., = X, X_,1, ---» X,



Target Tracking
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Radar-based tracking Visual tracking of
of multiple targets articulated objects
(L. Sigal et. al., 2006)

e Estimate motion of targets in 3D world from
indirect, potentially noisy measurements



Financial Forecasting
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 Predict future market behavior from historical
data, news reports, expert opinions, ...


http://www.steadfastinvestor.com/

Biological Sequence Analysis

(E. Birney, 2001)

 Temporal models can be adapted to exploit
more general forms of sequential structure, like
those arising in DNA sequences 5



Speech Recognition

* Given an audio
waveform, would like
to robustly extract &
recognize any spoken
words

e Statistical models can
be used to

Provide greater
robustness to noise

Adapt to accent of
different speakers

Learn from training

S. Roweis 2004



Markov Chain

* Set of states
— Initial probabilities
— Transition probabilities

Markov Chain models system dynamics
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Markov Chains: Graphical Models
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Difference from a Markov Decision Process?
It iIs a system that transitions by itself



Hidden Markov Model

* Set of states
— Initial probabilities
— Transition probabilities

* Set of potential observations

— Emission/Observation probabilities

HMM generates observation sequence
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Hidden Markov Models (HMMs)

Finite state machine

A

Hidden state sequence

ONON N NON NONC

Generates 0; 0, 03 04 05 04 0y Og

Observation sequence

Graphical Model
Random variable X;
Hidden states @_> .. takes values from
{s1, 52, 83, 84}
Random variable y, takes
Observations o Y2 .- values from
{oll 02, 03, Og4, 05, }
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HMM

Finite state machine

A

Hidden state sequence

ONON N NON NONC

Generates 0; 0, 03 04 05 04 0y Og

Observation sequence

Graphical Model
Hidden states @_y
Random variable y, takes

Observations cee Yioo ... values from
{01, 02/ 031 04/ 05, }

Random variable X;
.. Takes values from

{51,582, 53,54}
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HMM
Graphical Model

Random variable y; takes
Hidden states @_>
Random variable x, takes

.. values from
Observations N VA ... values from

{ ' 321 331 54}
{01/ 02, 03, 04, 05, }

Need Parameters:
Start state probabilities: P(x;=s)
Transition probabilities: P(x,=s; | x;.1=5})
Observation probabilities: P(y;=0; | x;=sy)
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Hidden Markov Models

» Just another graphical model...

“Conditioned on the present,
the past & future are independent”
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Hidden states

hidden

states
observed

process

» Given x4, earlier observations provide no
additional information about the future:

P(Yts Yet1s- - | Tt Yt—1,Yt—2,---) = D(Yts Yp415--- | Tt)



HMM Generative Process

= We can easily sample sequences pairs:
Xo:n,Yon=So:n,Wo:n

= Sample initial state: P(X,)

= Fori=1...n

= Sample Sifrom the distribution P(Si|Si-1)

= Sample Wi from the distribution P(wi|si)
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Example: POS Tagging

e Useful as a pre-processing step

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

= Setup:
= states S = {DT, NNP, NN, ... } are the POS tags
= QObservations W =V are words

= Transition dist'n P(Si|Si-1) models the tag sequences
= Observation dist'n P(Wi|Si) models words given their POS



Example: Chunking

Find spans of text with certain properties

For example: named entities with types
— (PER, ORG, or LOC)

Germany ’s representative to the European Union’s veterinary
committee Werner Zwingman said on Wednesday consumers

should...

[Germany], o 's representative to the [European Union] gz s
veterinary committee [Werner Zwingman] ¢ said on Wednesday
consumers should ...



Example: Chunking

[Germany]LOC’s representative to the [European Union]ORG ‘s veterinary
committee [Werner Zwingman]PER said on Wednesday consumers should ...

Germany/BL’s/NA representativé/NA to/NA the/NA European/BO Union/CO
‘s/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA
Wednesday/NA consumers/NA should/NA ...

HMM Model:

— States S={NA, BL, CL, BO, CO, BL, CL} represent beginnings (BL, BO, BP} and
continuations (CL, CO, CP) of chunks, and other (NA)

— Observations W =V are words
— Transition dist’'n P(s; [s;_;) models the tag sequences
— Observation dist'n P(w; [s;) models words given their type



Example: The Occasionally Dishonest Casino

A casino has two dice:
* Fairdie:

P(1)=P(2)=P(3) =P(4)=P(5)=P(6)=1/6
* Loaded die:

P(1)=P(2) =P(3) =P(4)=P(5)=1/10; P(6) = 1/2
* Dealer switches between dice as:

— Prob(Fair - Loaded) =0.01

— Prob(Loaded — Fair) =0.2

— Transitions between dice obey a Markov process
Game:
1. Youbet S1
2. You roll (always with a fair die)

3. Casino player rolls
(maybe with fair die, maybe with loaded die)

4. Highest number wins $2




An HMM for the occasionally
dishonest casino

)

P(1|F)=1/6 P(1]L) = 1/10
P(2|IF)=1/6 P(2IL)=1/10
P(3|F)=1/6 P(3|L)=1/10
P(4|F)=1/6 P(4|L)=1/10

P(5|F)=1/6 P(5|L)=1/10
P(6|F)=1/6 P(6|L) =1/2
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Question # 1 — Evaluation

GIVEN
A sequence of rolls by the casino player

124552646214614613613666166466163661636616361...

QUESTION

How likely is this sequence, given our model of how the
casino works?

This is the EVALUATION problem in HMMs
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Question # 2 — Decoding

GIVEN
A sequence of rolls by the casino player

1245526462146146136136661664661636616366163...

QUESTION

What portion of the sequence was generated with the
fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

22



Question # 3 — Learning

GIVEN
A sequence of rolls by the casino player

124552646214614613613666166466163661636616361651...

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die?

How often does the casino player change from fair to
loaded, and back?

This is the LEARNING question in HMMs
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HMM Inference

e Evaluation: prob. of observing an obs. sequence

— Forward Algorithm (very similar to Viterbi)

* Decoding: most likely sequence of hidden states
— Viterbi algorithm

 Marginal distribution: prob. of a particular state

— Forward-Backward



Decoding Problem

Givenw=w; w_and HMM 8, what is “best” parse s; s,?

Several possible meanings of ‘solution’
1. Stateswhich are individually most likely
2. Single best state sequence

We want sequence s, s,
such that P(s|w)is maximized

s”=argmax, P(s|w)
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Most Likely Sequence

* Problem:find the most likely (Viterbi) sequence under the model
*
$0., = arg max P(sg.n|wo.n)
S0:n
= Given model parameters, we can score any seguence pair
NNP VBZ NN NNS CD NN

Fed raises Interest rates 0.5 percent

P(So:n,Wo:n)-P(NNP|) P(Fed|NNP) P(VBZ|NNP) P(raises|VBZ) P(NN|NNP).....

* |n principle, we're done — list all possible tag sequences, scor&
each one, pick the best one (the Viterbi state sequence)
2n multiplications

NNP VBZ NN NNS CD NN » |Og|3:-23%"”6"6e
NNP NNS NN NNS CD NN » logP =-29

|S|" state sequences!
NNP VBZ VB NNS CD NN » logP =-27
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The occasionally dishonest casino

* Known:
— The structure of the model
— The transition probabilities

e Hidden: What the casino did
— FFFFFLLLLLLLFFFF...

e Observable: The series of die tosses
—3415256664666153. ..

e What we must infer:
— When was a fair die used?

— When was a loaded one used?

* The answer is a sequence
FFFFFFFLLLLLLFFF. ..

27



The occasionally dishonest casino

W= (W, W,,W;)=(6,2,6)

Pr(w,s®) = p(F |0)p(6|F)p(F|F)p(2|F)p(F|F)p(6|F)
s@ = FFF —0.5% = x0.99% = x0.99x
6 6 6
~0.00227
(2)y _
(_ (L PrOons®)=p(LIO)p(6|Lp(LIL)P(EIL)p(LIL)p(EIL)

=0.5x0.5%x0.8x0.1x0.8x0.5
=0.008

5@ — LEL Pr(w,s) = p(L|0)p(6| L) p(F |L)p(2| F)p(L|F)p(6]L)

=0.5x0.5x% O.ZX%X 0.01x0.5

~ 0.0000417



Finding the Best Trajectory

 Too many trajectories (state sequences) to list
Option 1: Beam Search

. /'
rais 7
Fed:N < _ . ~
<« railses:V
Fed:v raises:N /_',
\

— Abeamis a set of partial hypotheses
— Start with just the single empty trajectory
— Ateach derivation step:

* Considerall continuations of previous hypotheses
e Discard most, keep top k

= Beam search works ok in practice

.. but sometimes you want the optimal answer
.. and there’s usually a better option than naive beams
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The State Lattice / Trellis

ONONONMONONGO
ONONONMONONGO,
ONONONMONONGO,
ONONONMONONGO
ONONONMONONGO,
ONONONMONONGO,

START Fed raises interest rates END



The State Lattice / Trellis

A 9.0 0 00
@O ® ® ® ®
©® OO ® © ©
® © ® ©® © 6
® ® ® ® ® ©

START Fed raises interest rates END



Dynamic Programming

S0, = arg max P(so:n|wo:n) = arg max P(so:n, wo:n)
S0:n SO:n

First, consider how to compute the max:

Deflne: _
()i(S) — TNax P(S(_):j_l. S, u-’():'i)
$0:i—1

Then:

(5.Zj ( Si ) =

0,(s): probability of most likely state sequence
ending with state s, given observations w;, .

o W

32



Dynamic Programming

ng = arg max P( 50w ) = arg max P(So::Wo:w )
SO:n SO:n

First, consider how to compute the max:

Define: _
0; (S) = 111ax P(S();l'_l y ‘lL-’Q;,f)
50:i—1
Then:
0i(si) = max P(w;|s;)P(si|si—1)P(50:i—1, Wo:i 1)

S0:i—1

= P(w;|s;) max P(s;|s;—1) max P(sg.;—1, wg:i—1)

Si—1 S0:2—2
= Plils;) max P(szsi 1) 1(8i-1)
8i—1

0,(s): probability of most likely state sequence
ending with state s, given observations wy, ..., W,

33




Vitterbi Algorithm

= Dynamic program for computing (for all 7)

dil(s) = ng}i P(s0:i—1, S, wo:;)
305

* The score of a best path up to position 7 ending in state s
S 1 if s =START
do(sg) =

0 otherwise

Fori=1..n

0,(s) =max P(s|s")P(w|s )0, ,(s")

= Also store a backtrace
P, (s) =argmax P(s | s")P(w]|s )0, ,(s")

34



The Viterbi Algorithm

T Wy
State 1 o T
2 MOXS' 6;_1(5') * P'rr'ans* Pobs
i t‘i(s)
v
K /

Remember: ai(s) = probability of most likely
state seq ending with s at time i
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Terminating Viterbi

Wi W iniieiieiieeeeeeeeeeeenreeneenneeneennennn Wy
State 1 5
2 0
Choose
| 6 Max
0
K 0
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Terminating Viterbi

Wi W aieieiiee e e ee e e ee s et ee e s e s e ennaens e Wy
State 1 /
2 / \\ O |+ Max
\ | -
| . / \\/ ol
K \/

How did we compute §*?  MaXs 3:-1(5) ™ Prrans™ Poss

Now Backchain to Find Final Sequence

Time: O(|S|?N) o
Spqce: O(lslN) <« Linearin length of sequence
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Viterbi: Example

w
€ 6 2 6
Bl 1 0 0 0
(1/6)xmax{(1/12)x0.99, | (1/6)xmax{0.01375x0.99,
s Flo|Mo® (1/4)<0.2) 0.02x0.2)
=0.01375 = 0.00226875
(1/ /2) (1/10)xmax{(1/12)x0.01, | (1/2)xmax{0.01375x0.01,
L| O @ ‘\ (1/4)x0.8} ‘ 0.02x0.8}
< 0.08

0.99 0.8
[cz (s) = p(wi | s)max(p(s | s')az_l(s'))} %/5‘”/@9
0.2



Viterbi gets it right more often than not

Rolls
Die

Viterbi

315116246446644245321131631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls
Die

Viterbi

651166453132651245636664631636663162326455235266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLILLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFEFF

Rolls
Die

Viterbi

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls
Die

Viterbi

366163666466232534413661661163252562462255265252466435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFFFFFFFFEFEFFFEF

Rolls
Die

Viterbi

2331216253644144323351632436336655624666062632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
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Computing Marginals

* Problem: find the marginal distribution

P(si|wom) o< P(si, wom) = Y ¥ P(S0:n, Woin)

80:i—1 Si+1:n

= Given model parameters, we can score any tag sequence
NNP  VBZ NN NNS CD NN

Fed raises Interest rates 0.5 percent
P(NNP|¢) P(Fed|NNP) P(VBZ|NNP) P(raises|VBZ) P(NN|NNP).....

= |n principle, we're done — list all possible tag sequences,
score each one, sum up the values

40



The State Lattice / Trellis

ONONONMONONGO
ONONONMONONGO,
ONONONMONONGO,
ONONONMONONGO
ONONONMONONGO,
ONONONMONONGO,

START Fed raises interest rates END



The Forward Backward Algorithm

P(Si:w{]:n) — P(wﬂ:iasi)P(wi+1:n|5i)

P(Si,WO : n)

P(Si, Wo:i,Wi+1:n)
P(Si,WO : i)P(Wi +1:n|Si,Wo: i)
P(Si,Wo:i)P(Wi+1:n]|Si)




The Forward Backward Algorithm

P(Si:wﬂ:n) — P(w[}:iasz’)P(wi+1:n|5i)

Sum over all paths, on both sides:
ai(si)) = P(wos,si) = ) P(wos, So:)

S0:i—1

— Zp(wilsi)P(Si‘Si—l)ai—l(Si—l)

Si—1

Bi(si) = PWittnlsi)) = Y  P(Wit1in, Sit1in|i)
Si+1:n
= > P(wiri|siy1) P(sit1]s:)Bis1(sit1)

Si+41
43



The Forward Backward Algorithm

Two passes over entire observation sequence
e Forward: ites 1 Hao=START
0(s0) = { 0 otherwise
For 4 =1 .
ZP (wi|s0)P(5:]5i—1) 05 1(5i-1)

Si—1

e Backward:
g 1. i 5= STOP
3 (Sn) =

0 otherwise

For 3 = n-1 ... 0
ma Z P(‘l.l'-j,+1|-'5i+1) H—ll" z+1( i+1)

Si41

44



HMM Learning

* Learning from data D
— Supervised
* D={(So:n,Wo:n)i[1=1...m}
— Unsupervised
* D={(Won)i|1=1...m}
 We won't do this case!
* (~hidden vars) EM

— Also called Baum Welch algorithm



Supervised Learning

— GivendataD={Xi|1=1 ... m } where Xi=(So:n,Wo:n)
is a state, observation sequence pair

— Define the parameters © to include:

* For every pair of states: 0 ¢ = P(s'|s)

* For every state, obs. pair: 05, = P(w|s)
— Then the data likelihood is:

L(D;©) = P(X1,X,...,Xn|0) = | | P(X;|6)

. o I
= And the maximum likelihood solutions Is

©* = arg max L(D;©)



Final ML Estimates (as in BNs)

— ¢(s,s’)and c(s,w) are the empirical counts of
transitions and observationsin the data D

— The final, intuitive, estimates:

c(s,8)  , __ c(sw)
Yarcls, ) T s w)

93,3’ —

= Just as with BNs, the counts can be zero
* use smoothing techniques!



The Problem with HMMs

e We want more than an Atomic View of Words

 We want many arbitrary, overlapping features
of words

identity of word

endS In “_Iy!!, “_ed”’ “_ing”

is capitalized

appears in a name database/Wordnet

t-1 t t+1

Use discriminative models instead of generative ones
(e.g., Conditional Random Fields)
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Finite State Models

Generative
Naive Bayes HMMs directed models
N~ \.
Q Q Sequence General Q
Graphs
Conditional Conditional Conditional
Logistic
Regression
Linear-chain CRFS General CRFs

Q Q Sequence General
Graphs




Temporal Models

* Full Bayesian Networks have dynamic versions
too
— Dynamic Bayesian Networks (Chapter 15.5)

— HMM is a special case

e HMMs with continuous variables often useful
for filtering (estimating current state)

— Kalman filters (Chapter 15.4)



