Hidden Markov Models Chapter 15

Mausam

(Slides based on Dan Klein, Luke Zettlemoyer, Alex Simma, Erik Sudderth, David Fernandez-Baca,
Drena Dobbs, Serafim Batzoglou, William Cohen, Andrew McCallum, Dan Weld)

Temporal Models

- Graphical models with a temporal component
- $S_{t} / X_{t}=$ set of unobservable variables at time t
- $W_{t} / Y_{t}=$ set of evidence variables at time t
- Notation $X_{a: b}=X_{a}, X_{a+1}, \ldots, X_{b}$

Target Tracking

Radar-based tracking of multiple targets

Visual tracking of articulated objects
(L. Sigal et. al., 2006)

- Estimate motion of targets in 3D world from indirect, potentially noisy measurements

Financial Forecasting

http://www.steadfastinvestor.com/

- Predict future market behavior from historical data, news reports, expert opinions, ...

Biological Sequence Analysis

(E. Birney, 2001)

- Temporal models can be adapted to exploit more general forms of sequential structure, like those arising in DNA sequences

Speech Recognition

- Given an audio waveform, would like to robustly extract \& recognize any spoken words
- Statistical models can be used to
- Provide greater robustness to noise
- Adapt to accent of different speakers
- Learn from training

Time (seconds)

Markov Chain

- Set of states
- Initial probabilities
- Transition probabilities

Markov Chain models system dynamics

Markov Chains: Graphical Models

$$
p\left(x_{0}, x_{1}, \ldots, x_{T}\right)=p\left(x_{0}\right) \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right)
$$

Difference from a Markov Decision Process?
it is a system that transitions by itself

Hidden Markov Model

- Set of states
- Initial probabilities
- Transition probabilities
- Set of potential observations

- Emission/Observation probabilities

O_{1}	O_{2}	O_{3}	O_{4}	O_{5}

HMM generates observation sequence

Hidden Markov Models (HMMs)

Finite state machine
Hidden state sequence

Graphical Model

Hidden states

Observations

Random variable X_{\dagger} takes values from $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$

Random variable y_{\dagger} takes values from $\left\{0_{1}, 0_{2}, O_{3}, O_{4}, 0_{5}, \ldots\right\}$

HMM

Finite state machine

Hidden state sequence

Graphical Model

Hidden states

Observations

Random variable X_{t}
... takes values from $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$

Random variable y_{\dagger} takes

. values from
$\left\{0_{1}, O_{2}, O_{3}, O_{4}, o_{5}, \ldots\right\}$

HMM

Graphical Model

Random variable y_{\dagger} takes

Need Parameters:
Start state probabilities: $P\left(x_{1}=s_{k}\right)$
Transition probabilities: $P\left(x_{t}=s_{i} \mid x_{t-1}=s_{k}\right)$
Observation probabilities: $P\left(y_{+}=o_{j} \mid x_{t}=s_{k}\right)$

Hidden Markov Models

- Just another graphical model...

"Conditioned on the present, the past \& future are independent"

Hidden states

- Given x_{t}, earlier observations provide no additional information about the future:
$p\left(y_{t}, y_{t+1}, \ldots \mid x_{t}, y_{t-1}, y_{t-2}, \ldots\right)=p\left(y_{t}, y_{t+1}, \ldots \mid x_{t}\right)$

HMM Generative Process

- We can easily sample sequences pairs:

$$
X_{0: n}, Y_{0: n}=S_{0: n}, W_{0: n}
$$

- Sample initial state: $\mathrm{P}\left(\mathrm{x}_{0}\right)$
- For $\mathrm{i}=1 \ldots \mathrm{n}$
- Sample Sifrom the distribution $\mathrm{P}\left(\mathrm{Si}_{\mathrm{i}} \mid \mathrm{Si}-1\right)$
- Sample Wi from the distribution $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{Si}_{\mathrm{i}}\right)$

Example: POS Tagging

- Useful as a pre-processing step

DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

- Setup:
- states $\mathrm{S}=\{\mathrm{DT}, \mathrm{NNP}, \mathrm{NN}, \ldots\}$ are the POS tags
- Observations $\mathrm{W}=\mathrm{V}$ are words
- Transition dist'n $\mathrm{P}(\mathrm{Si} \mid \mathrm{Si}-1)$ models the tag sequences
- Observation dist'n $\mathrm{P}\left(\mathrm{Wi}_{\mathrm{i}} \mid \mathrm{Si}\right)$ models words given their POS

Example: Chunking

- Find spans of text with certain properties
- For example: named entities with types
- (PER, ORG, or LOC)
- Germany 's representative to the European Union's veterinary committee Werner Zwingman said on Wednesday consumers should...
- [Germany] ${ }_{\text {Loc }}$'s representative to the [European Union] ${ }_{\text {ORG }}$'s veterinary committee [Werner Zwingman] ${ }_{\text {PER }}$ said on Wednesday consumers should ...

Example: Chunking

- [Germany]LOC's representative to the [European Union]ORG 's veterinary committee [Werner Zwingman]PER said on Wednesday consumers should ...
- Germany/BL's/NA representative/NA to/NA the/NA European/BO Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA Wednesday/NA consumers/NA should/NA ...
- HMM Model:
- States $S=\{N A, B L, C L, B O, C O, B L, C L\}$ represent beginnings (BL, BO, BP $\}$ and continuations (CL, CO, CP) of chunks, and other (NA)
- Observations W=V are words
- Transition dist'n $P\left(s_{i} / s_{i-1}\right)$ models the tag sequences
- Observation dist'n $P\left(w_{i} \mid s_{i}\right)$ models words given their type

Example: The Occasionally Dishonest Casino

A casino has two dice:

- Fair die:
$P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$

- Loaded die:
$P(1)=P(2)=P(3)=P(4)=P(5)=1 / 10 ; P(6)=1 / 2$
- Dealer switches between dice as:
$-\operatorname{Prob}($ Fair \rightarrow Loaded) $=0.01$
$-\operatorname{Prob}($ Loaded \rightarrow Fair $)=0.2$
- Transitions between dice obey a Markov process

Game:

1. You bet \$1
2. You roll (always with a fair die)
3. Casino player rolls
(maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$

An HMM for the occasionally dishonest casino

Question \# 1 - Evaluation

GIVEN
A sequence of rolls by the casino player
124552646214614613613666166466163661636616361...

QUESTION
How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Question \# 2 - Decoding

GIVEN
A sequence of rolls by the casino player
1245526462146146136136661664661636616366163...

QUESTION
What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

Question \# 3 - Learning

GIVEN
A sequence of rolls by the casino player
124552646214614613613666166466163661636616361651...

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die?
How often does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

HMM Inference

- Evaluation: prob. of observing an obs. sequence - Forward Algorithm (very similar to Viterbi)
- Decoding: most likely sequence of hidden states - Viterbi algorithm
- Marginal distribution: prob. of a particular state - Forward-Backward

Decoding Problem

Given $w=w_{1} \ldots w_{n}$ and HMM θ, what is "best" parse $s_{1} \ldots s_{n}$?
Several possible meanings of 'solution'

1. States which are individually most likely
2. Single best state sequence

We want sequence $\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{n}}$,
such that $P(s \mid w)$ is maximized

$$
s^{*}=\operatorname{argmax}_{s} P(s \mid w)
$$

Most Likely Sequence

- Problem: find the most likely (Viterbi) sequence under the model

$$
s_{0: n}^{*}=\arg \max _{s_{0: n}} P\left(s_{0: n} \mid w_{0: n}\right)
$$

- Given model parameters, we can score any sequence pair
NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent .
$P\left(S_{0}: \mathbf{n}, \mathbf{W}_{0}: \mathbf{n}\right)=P(N N P \mid \phi) P(F e d \mid N N P) P(V B Z \mid N N P) P($ raises $\mid V B Z) P(N N \mid N N P) . . .$.

- In principle, we're done - list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)
$2 n$ multiplications NNP VBZ NN NNS CD NN $\Rightarrow \log P=-23<$ per sequence NNP NNS NN NNS CD NN $\Rightarrow \log P=-29$ NNP VBZ VB NNS CD NN $\Rightarrow \log P=-27$
$|S|{ }^{n}$ state sequences

The occasionally dishonest casino

- Known:
- The structure of the model
- The transition probabilities
- Hidden: What the casino did
- FFFFFLLLLLLLFFFF...
- Observable: The series of die tosses
- 3415256664666153...
- What we must infer:
- When was a fair die used?
- When was a loaded one used?
- The answer is a sequence FFFFFFFLLLLLLFFF...

The occasionally dishonest casino

$$
w=\left\langle w_{1}, w_{2}, w_{3}\right\rangle=\langle 6,2,6\rangle
$$

$$
s^{(2)}=F F F
$$

$$
\begin{aligned}
\operatorname{Pr}\left(w, s^{(1)}\right) & =p(F \mid 0) p(6 \mid F) p(F \mid F) p(2 \mid F) p(F \mid F) p(6 \mid F) \\
& =0.5 \times \frac{1}{6} \times 0.99 \times \frac{1}{6} \times 0.99 \times \frac{1}{6} \\
& \approx 0.00227
\end{aligned}
$$

$$
\begin{aligned}
s^{(2)}=L L L \quad \operatorname{Pr}\left(w, s^{(2)}\right) & =p(L \mid 0) p(6 \mid L) p(L \mid L) p(2 \mid L) p(L \mid L) p(6 \mid L) \\
& =0.5 \times 0.5 \times 0.8 \times 0.1 \times 0.8 \times 0.5 \\
& =0.008
\end{aligned}
$$

$$
s^{(3)}=L F L
$$

$$
\operatorname{Pr}\left(w, s^{(3)}\right)=p(L \mid 0) p(6 \mid L) p(F \mid L) p(2 \mid F) p(L \mid F) p(6 \mid L)
$$

$$
=0.5 \times 0.5 \times 0.2 \times \frac{1}{6} \times 0.01 \times 0.5
$$

$$
\approx 0.0000417
$$

Finding the Best Trajectory

- Too many trajectories (state sequences) to list
- Option 1: Beam Search

- A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
- Consider all continuations of previous hypotheses
- Discard most, keep top k
- Beam search works ok in practice
- ... but sometimes you want the optimal answer
- ... and there's usually a better option than naïve beams

The State Lattice / Trellis

The State Lattice / Trellis

Dynamic Programming

$$
s_{0: n}^{*}=\arg \max _{s_{0: n}} P\left(s_{0: n} \mid w_{0: n}\right)=\arg \max _{s_{0: n}} P\left(s_{0: n}, w_{0: n}\right)
$$

First, consider how to compute the max:
Define:

$$
\delta_{i}(s)=\max _{s_{0: i-1}} P\left(s_{0: i-1}, s, w_{0: i}\right)
$$

Then:

$$
\delta_{i}\left(s_{i}\right)=
$$

$$
=
$$

$\delta_{i}(s)$: probability of most likely state sequence ending with state s, given observations w_{1}, \ldots, w_{i}

Dynamic Programming

$$
s_{0: n}^{*}=\arg \max _{s_{0: n}} P\left(s_{0: n} \mid w_{0: n}\right)=\arg \max _{s_{0: n}} P\left(s_{0: n}, w_{0: n}\right)
$$

First, consider how to compute the max:
Define:

$$
\delta_{i}(s)=\max _{s_{0: i-1}} P\left(s_{0: i-1}, s, w_{0: i}\right)
$$

Then:

$$
\begin{aligned}
\delta_{i}\left(s_{i}\right) & =\max _{s_{0: i-1}} P\left(w_{i} \mid s_{i}\right) P\left(s_{i} \mid s_{i-1}\right) P\left(s_{0: i-1}, w_{0: i--1}\right) \\
& =P\left(w_{i} \mid s_{i}\right) \max _{s_{i-1}} P\left(s_{i} \mid s_{i-1}\right) \max _{s_{0: i-2}} P\left(s_{0: i-1}, w_{0: i-1}\right) \\
& =P\left(w_{i} \mid s_{i}\right) \max _{s_{i-1}} P\left(s_{i} \mid s_{i-1}\right) \delta_{i-1}\left(s_{i-1}\right)
\end{aligned}
$$

$\delta_{i}(\mathrm{~s})$: probability of most likely state sequence ending with state s, given observations w_{1}, \ldots, w_{i}

Vitterbi Algorithm

- Dynamic program for computing (for all i)

$$
\delta_{i}(s)=\max _{s_{0: i-1}} P\left(s_{0: i-1}, s, w_{0: i}\right)
$$

- The score of a best path up to position i ending in state s

$$
\delta_{0}\left(s_{0}\right)= \begin{cases}1 & \text { if } s_{0}=S T A R T \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \text { For } i=1 \ldots n \\
& \qquad \delta_{i}(s)=\max _{s^{\prime}} P\left(s \mid s^{\prime}\right) P(w \mid s) \delta_{i-1}\left(s^{\prime}\right)
\end{aligned}
$$

- Also store a backtrace

$$
\psi_{i}(s)=\arg \max P\left(s \mid s^{\prime}\right) P\left(w \mid s^{\prime}\right) \delta_{i-1}\left(s^{\prime}\right)
$$

The Viterbi Algorithm

Remember: $\boldsymbol{\delta}_{i}(\mathbf{s})=$ probability of most likely state seq ending with s at time \mathbf{i}

Terminating Viterbi

Terminating Viterbi

How did we compute δ^{\star} ? $\quad \operatorname{Max}_{\mathrm{s}^{\prime}} \delta_{\mathrm{N}-1}\left(\mathrm{~s}^{\prime}\right) * P_{\text {trans }}{ }^{\star} P_{\text {obs }}$
Now Backchain to Find Final Sequence
Time: $O\left(|S|{ }^{2} N\right)$
Space: O(|S|N)
Linear in length of sequence

Viterbi: Example

B	1	0	0	0
$s \mathrm{~F}$	0	$\begin{gathered} (1 / 6) \times(1 / 2) \\ =1 / 12 \end{gathered}$	$\begin{gathered} (1 / 6) \times \max \{(1 / 12) \times 0.99, \\ (1 / 4) \times 0.2\} \\ =0.01375 \end{gathered}$	$\begin{gathered} (1 / 6) \times \max \{0.01375 \times 0.99, \\ 0.02 \times 0.2\} \\ =0.00226875 \end{gathered}$
L	0	$(1 / 2) \times(1 / 2)$	$\begin{aligned} & (1 / 10) \times \max \{(1 / 12) \times 0.01, \\ & =0.02 \stackrel{(1 / 4) \times 0.8\}}{ } \end{aligned}$	$\begin{aligned} & (1 / 2) \times \max \{0.01375 \times 0.01, \\ & =0.08 \quad 0.02 \times 0.8\} \end{aligned}$

$$
\delta_{i}(s)=p\left(w_{i} \mid s\right) \max _{s^{\prime}}\left(p\left(s \mid s^{\prime}\right) \delta_{i-1}\left(s^{\prime}\right)\right)
$$

Viterbi gets it right more often than not

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Viterbi	FFL
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFFF
Rolls	2331216253644144323351632436366556246666262666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Computing Marginals

- Problem: find the marginal distribution

$$
P\left(s_{i} \mid w_{0: n}\right) \propto P\left(s_{i}, w_{0: n}\right)=\sum_{s_{0: i-1}} \sum_{s_{i+1: n}} P\left(s_{0: n}, w_{0: n}\right)
$$

- Given model parameters, we can score any tag sequence
NNP VBZ NN NNS CD NN .

Fed raises interest rates 0.5 percent . P(NNP| \mid) $P($ Fed|NNP) $P(V B Z \mid N N P) P($ raises|VBZ) $P(N N \mid N N P) . . .$.

- In principle, we're done - list all possible tag sequences, score each one, sum up the values

The State Lattice / Trellis

The Forward Backward Algorithm

$$
P\left(s_{i}, w_{0: n}\right)=P\left(w_{0: i}, s_{i}\right) P\left(w_{i+1: n} \mid s_{i}\right)
$$

$$
\begin{aligned}
P\left(s_{i}, w_{0}: n\right) & =P\left(s_{i}, w_{0}: i, w_{i+1: n}\right) \\
& =P\left(s_{i}, w_{0}: i\right) P\left(w_{i+1: n} \mid s_{i}, w_{0: i}\right) \\
& =P\left(s_{i}, w_{0: i}\right) P\left(w_{i+1: n} \mid s_{i}\right)
\end{aligned}
$$

The Forward Backward Algorithm

$$
P\left(s_{i}, w_{0: n}\right)=P\left(w_{0: i}, s_{i}\right) P\left(w_{i+1: n} \mid s_{i}\right)
$$

Sum over all paths, on both sides:

$$
\begin{aligned}
\alpha_{i}\left(s_{i}\right) & =P\left(w_{0: i}, s_{i}\right)=\sum_{s_{0: i-1}} P\left(w_{0: i}, s_{0: i}\right) \\
& =\sum_{s_{i-1}} p\left(w_{i} \mid s_{i}\right) P\left(s_{i} \mid s_{i-1}\right) \alpha_{i-1}\left(s_{i-1}\right) \\
\beta_{i}\left(s_{i}\right) & =P\left(w_{i+1: n} \mid s_{i}\right)=\sum_{s_{i+1: n}} P\left(w_{i+1: n}, s_{i+1: n} \mid s_{i}\right) \\
& =\sum_{s_{i+1}} P\left(w_{i+1} \mid s_{i+1}\right) P\left(s_{i+1} \mid s_{i}\right) \beta_{i+1}\left(s_{i+1}\right)
\end{aligned}
$$

The Forward Backward Algorithm

Two passes over entire observation sequence

- Forward:

$$
\left.\begin{array}{l}
\alpha_{0}\left(s_{0}\right)= \begin{cases}1 & \text { if } s_{0}=S T A R T \\
0 & \text { otherwise }\end{cases} \\
\text { For } i=1 \ldots
\end{array} \begin{array}{rl}
& \ldots
\end{array}\right]
$$

- Backward:

$$
\begin{aligned}
& \beta_{n}\left(s_{n}\right)= \begin{cases}1 & \text { if } s_{n}=S T O P \\
0 & \text { otherwise }\end{cases} \\
& \text { For } i=n-1 \ldots 0 \\
& \quad \beta_{i}\left(s_{i}\right)=\sum_{s_{i+1}} P\left(w_{i+1} \mid s_{i+1}\right) P\left(s_{i+1} \mid s_{i}\right) \beta_{i+1}\left(s_{i+1}\right)
\end{aligned}
$$

HMM Learning

- Learning from data D
- Supervised
- $D=\left\{\left(\mathbf{S}_{0}: n, \mathbf{W}_{0: n}\right)_{i} \mid i=1 \ldots m\right\}$
- Unsupervised
- $D=\left\{\left(\mathbf{W}_{0: n}\right) \mathrm{i} \mid \mathrm{i}=1 \ldots \mathrm{~m}\right\}$
- We won't do this case!
- (~hidden vars) EM
- Also called Baum Welch algorithm

Supervised Learning

- Given data $D=\left\{X_{i} \mid i=1 \ldots m\right\}$ where $X_{i}=\left(S_{0}: n, W_{0}: n\right)$ is a state, observation sequence pair
- Define the parameters Θ to include:
- For every pair of states: $\quad \theta_{s, s^{\prime}}=P\left(s^{\prime} \mid s\right)$
- For every state, obs. pair: $\quad \theta_{s, w}=P(w \mid s)$
- Then the data likelihood is:
$L(D ; \Theta)=P\left(X_{1}, X_{2}, \ldots, X_{m} \mid \Theta\right)=\prod P\left(X_{j} \mid \Theta\right)$
- And the maximum likelihood solutions is

$$
\Theta^{*}=\arg \max _{\Theta} L(D ; \Theta)
$$

Final ML Estimates (as in BNs)

$-c\left(s, s^{\prime}\right)$ and $c(s, w)$ are the empirical counts of transitions and observations in the data D

- The final, intuitive, estimates:

$$
\theta_{s, s^{\prime}}=\frac{c\left(s, s^{\prime}\right)}{\sum_{s^{\prime \prime}} c\left(s, s^{\prime \prime}\right)} \quad \theta_{s, w}=\frac{c(s, w)}{\sum_{w^{\prime}} c\left(s, w^{\prime}\right)}
$$

- Just as with BNs, the counts can be zero
- use smoothing techniques!

The Problem with HMMs

- We want more than an Atomic View of Words
- We want many arbitrary, overlapping features of words
identity of word ends in "-ly", "-ed", "-ing" is capitalized appears in a name database/Wordnet

Use discriminative models instead of generative ones
(e.g., Conditional Random Fields)

Finite State Models

Naïve Bayes

Conditional

Sequence

HMMs

General Graphs

Conditional

Generative directed models

Conditional

Logistic
Regression

Linear-chain CRFs

General CRFs

Temporal Models

- Full Bayesian Networks have dynamic versions too
- Dynamic Bayesian Networks (Chapter 15.5)
- HMM is a special case
- HMMs with continuous variables often useful for filtering (estimating current state)
- Kalman filters (Chapter 15.4)

