
Supervised Learning (contd)

Linear Separation

Mausam

(based on slides by UW-AI faculty)
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Images as Vectors
Binary handwritten characters

Greyscale images

Treat an image as a high-

dimensional vector 
(e.g., by reading pixel values 

left to right, top to bottom row)
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Pixel value pi can be 0 

or 1 (binary image) or 

0 to 255 (greyscale)
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The human brain is extremely 
good at classifying images

Can we develop classification methods by 
emulating the brain?
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Neurons communicate via spikes

Inputs

Output spike 

(electrical pulse)

Output spike roughly dependent on whether 
sum of all inputs reaches a threshold
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Neurons as “Threshold Units”

Artificial neuron:

• m binary inputs (-1 or 1), 1 output (-1 or 1)

• Synaptic weights wji

• Threshold i

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold
w1i

(x) = 1 if x > 0 and -1 if x  0

)( ij

j

jii uwv  

w2i

w3i

6



“Perceptrons” for Classification

Fancy name for a type of layered “feed-forward” 
networks (no loops)

Uses artificial neurons (“units”) with binary inputs and 
outputs

Multilayer

Single-layer
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Perceptrons and Classification

Consider a single-layer perceptron

• Weighted sum forms a linear hyperplane

• Everything on one side of this hyperplane is in 
class 1 (output = +1) and everything on other 
side is class 2 (output = -1)

Any function that is linearly separable can be 
computed by a perceptron

0 ij

j

jiuw 
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Linear Separability

Example: AND is linearly separable

Linear hyperplane

v

u1 u2

 = 1.5
(1,1)

1

-1

1

-1
u1

u2-1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT
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How do we learn the appropriate 
weights given only examples of 

(input,output)?

Idea: Change the weights to decrease the error 
in output
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Perceptron Training Rule
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What about the XOR function?

(1,1)

1

-1

1

-1
u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR

Can a perceptron separate the +1 
outputs from the -1 outputs?

?
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Linear Inseparability

Perceptron with threshold units fails if classification 
task is not linearly separable

• Example: XOR

• No single line can separate the “yes” (+1)

outputs from the “no” (-1) outputs!

Minsky and Papert’s book 
showing such negative 
results put a damper on 
neural networks research 
for over a decade!

(1,1)
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How do we deal with linear 
inseparability?
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Idea 1: Multilayer Perceptrons

Removes limitations of single-layer networks

• Can solve XOR

Example: Two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2(x + y – 1.5) – 0.5 > 0

x y
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Multilayer Perceptron: What does it do?
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18



x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1

11

2

1
 -

2

1
 >0

Multilayer Perceptron: What does it do?

19



x y

out

x

y

1

1

2

1 2

02  yx

0
2

1
1  yx

=-1

=-1=1

=1

2

1

1

1 1

2

1

11

2

1


Perceptrons as Constraint 
Satisfaction Networks
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Back to Linear Separability

• Recall: Weighted sum in perceptron 
forms a linear hyperplane

• Due to threshold function, everything on 
one side of this hyperplane is labeled as 
class 1 (output = +1) and everything on 
other side is labeled as class 2 (output = -1)

0 bxw i

i

i
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Separating Hyperplane

denotes +1 output 

denotes -1 output

Class 2

Need to choose w and b based on training data

0 bxw i

i

i

Class 1
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Separating Hyperplanes

Different choices of w and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

denotes +1 output 

denotes -1 output

Class 1

Class 2
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Which hyperplane is best?

denotes +1 output 

denotes -1 output

Class 1

Class 2
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How about the one right in the middle?

Intuitively, this boundary 

seems good 

Avoids misclassification of 

new test points if they are 

generated from the same 

distribution as training points
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Margin

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.
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Maximum Margin and Support Vector Machine

The maximum 
margin classifier is 
called a Support 
Vector Machine (in 
this case, a Linear 
SVM or LSVM)

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against
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Why Maximum Margin?

• Robust to small 
perturbations of data 
points near boundary

• There exists theory 
showing this is best for 
generalization to new 
points 

• Empirically works great

28



What if data is not linearly separable?

Outliers (due to noise)
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Approach 1: Soft Margin SVMs

Allow errors ξ i (deviations from 
margin)

Trade off margin with errors.

Minimize:

ξ
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Not linearly separable

What if data is not linearly 
separable: Other ideas?
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Approach 2:   Map original input space to higher-
dimensional feature space; use linear classifier in 
higher-dim. space

x→ φ(x)

What if data is not linearly separable?

Kernel: additional bias to convert into high d space 32



Face Detection using 
SVMs

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)
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http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz


K-Nearest Neighbors 

A simple non-parametric classification algorithm

Idea:

• Look around you to see how your neighbors 
classify data

• Classify a new data-point according to a majority 
vote of your k nearest neighbors
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Distance Metric

How do we measure what it means to be a neighbor 
(what is “close”)?

Appropriate distance metric depends on the problem

Examples:

x discrete (e.g., strings): Hamming distance
d(x1,x2) = # features on which x1 and x2 differ

x continuous (e.g., vectors over reals): Euclidean 
distance 

d(x1,x2) = || x1-x2 || = square root of sum of squared 
differences between corresponding elements of data vectors
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Example
Input Data: 2-D points (x1,x2)

Two classes: C1 and C2.     New Data Point +

K = 4: Look at 4 nearest neighbors of +
3 are in C1, so classify + as C1
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Decision Boundary using K-NN

Some points 
near the 
boundary may 
be misclassified

(but maybe noise)
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What if we want to learn 
continuous-valued functions?

Input

Output
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Regression

K-Nearest neighbor

take the average of k-close by points

Linear/Non-linear Regression

fit parameters (gradient descent) 
minimizing the regression error/loss

Neural Networks

remove the threshold function

learning multi-layer networks: backpropagation
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Large Feature Spaces

Easy to overfit

Regularization

add penalty for large weights

prefer weights that are zero or close to zero

minimize 

regression error + C.regularization penalty
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