Supervised Learning (contd)
Linear Separation

Mausam
(based on slides by UW-AT faculty)
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Images as Vectors

Binary handwritten characters
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Greyscale images
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Treat an image as a high-

dimensional vector
(e.g., by reading pixel values
left to right, top to bottom row)
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Pixel value p; can be O
or 1 (binary image) or
0 to 255 (greyscale)



The human brain is extremely
good at classifying images

Can we develop classification methods by
emulating the brain?



Brains

10" neurons of > 20 types, 10* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

Axon from another cell

Nucleus

\/

Synapses

Cell body or Soma

Chapter 19, Sections 1-8




Neurons communicate via spikes

Dendrites
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InDUtS 7~ Axon hillock Myelinated axon
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—
O Output spike
/K (electrlcal pulse)

Output spike roughly dependent on whether
sum of all inputs reaches a threshold



Neurons as "Threshold Units”

Artificial neuron:
* m binary inputs (-1 or 1), 1 output (-1 or 1)
* Synaptic weights w;;
* Threshold p;

Wi

Weighted Sum  Threshold

Inputs u;

Output v,
(-1or +1)

(-1or +1)

OX)=1ifx>0and-11fx<0



"Perceptrons” for Classification

Fancy name for a type of layered "feed-forward”
networks (no loops)

Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer

Single-layer

AR\



Perceptrons and Classification

Consider a single-layer perceptron
- Weighted sum forms a /linear hyperplane

ijiuj — 1 =0
J

- Everything on one side of this hyperplane is in
class 1 (output = +1) and everything on other
side is class 2 (output = -1)

Any function that is linearly separable can be
computed by a perceptron




Linear Separability

Example: AND is linearly separable

Linear hyperplane
u; u, AND
-11-1] -1 u
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v=1 |ff u, + U2-1.5> 0

Similarly for OR and NOT



How do we /earn the appropriate
weights given only examples of
(input,output)?

Idea: Change the weights to decrease the error
in output
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Perceptron Training Rule

where
Aw; = n(t — o)x;
Where:
e t = c(X¥) is target value
® 0 is perceptron output

e 7 is small constant (e.g., 0.1) called learning rate
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What about the XOR function?

Uj

u, XOR
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Can a perceptron separate the +1
outputs from the -1 outputs?
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Linear Inseparability

Perceptron with threshold units fails if classification
task is not linearly separable

 Example: XOR
* No single line can separate the "yes” (+1)
outputs from the "no” (-1) outputs!

U
o S L
Minsky and Papert's book M1 o
showing such negative \X 1
results put a damper on 1 U
neural networks research ) .
for over a decadel! .1 .
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How do we deal with linear
inseparability?
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Idea 1: Multilayer Perceptrons

Removes limitations of single-layer networks
» Can solve XOR
Example: Two-layer perceptron that computes XOR

(05

(15

X y

Outputis +1 if andonly if x +y - 20(x+y-15)-05>0

15



Multilayer Perceptron: What does it do?

out
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Multilayer Perceptron: What does it do?

out —=-
Y 1+%x—y<0 ®




Multilayer Perceptron: What does it do?

out
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Multilayer Perceptron: What does it do?
®-1

out Y
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out

Perceptrons as Constraint
Satisfaction Networks
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Back to Linear Separability

- Recall: Weighted sum in perceptron
forms a /inear hyperplane

> wx +b=0

* Due to threshold function, everything on
one side of this hyperplane is labeled as
class 1 (output = +1) and everything on
other side is labeled as class 2 (output = -1)
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Separating Hyperplane

W.X. +b =0
Class 1 Z

« denotes +1 output

° denotes -1 output

o

Class 2

Need to choose w and b based on training data
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Separating Hyperplanes

Different choices of w and b give different hyperplanes
Class 1

« denotes +1 output

° denotes -1 output

Class 2

(This and next few slides adapted from Andrew Moore’s) 53


http://www.cs.cmu.edu/~awm/tutorials

N

Which hyperplane is best?

Class 1

« denotes +1 output

‘ . ° denotes -1 output
7
/% ©

Yy
> Class 2
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How about the one right in the middle?

Intuitively, this boundary
seems good

Avoids misclassification of
new test points if they are

o generated from the same
distribution as training points
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Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.
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Maximum Margin and Support Vector Machine

Support Vectors
are those
datapoints that
the margin
pushes up
against

The maximum
margin classifier is
called a Support
Vector Machine (in
this case, a Linear
SVM or LSVM)
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Why Maximum Margin?

e Robust to small
perturbations of data
points near boundary

° e There exists theory
showing this is best for
generalization to new

o points

e Empirically works great
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What if data is not linearly separable?

e «— Outliers (due to noise)
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Approach 1: Soft Margin SVMs

Allow errors & ,(deviations from
margin)

Trade off margin with errors.

Minimize: |’ + C 3" & subject to:

y,(W-x, +b)=1-¢& and & >0, Vi
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What if data is not linearly

separable: Other ideas?

I

Not linearly separable
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What if data is not linearly separable?

Approach 2: Map original input space to higher-
dimensional feature space: use linear classifier in
higher-dim. space
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Kernel: additional bias to convert into high d space



SVMs

Face Detection using

Test Set A Test Set B
Detect False || Detect False
Rate | Alarms Rate | Alarms
SVM 97.1 % 4 74.2% 20
Sung ct al. || 94.6 % 2 || 74.2% 11

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)



http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz

K-Nearest Neighbors

A simple non-parametric classification algorithm
Idea:

* Look around you to see how your neighbors
classify data

* Classify a new data-point according to a majority
vote of your k nearest neighbors
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Distance Metric

How do we measure what it means to be a neighbor
(what is “close”)?

Appropriate distance metric depends on the problem

Examples:

x discrete (e.g., strings): Hamming distance
d(x1,x,) = # features on which x; and x, differ

x continuous (e.g., vectors over reals): Euclidean
distance

d(x1,%2) = || x4-%5 || = square root of sum of squared
differences between corresponding elements of data vectors
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Example
Input Data: 2-D points (x4,X5)
Two classes: C; and C,. New Data Point +

X;
A [ C, 7509
A4

b

C,25%
- - 1 \\\t - * »
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K = 4: Look at 4 nearest neighbors of +
3 are in C;, so classify + as C;
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Decision Boundary using K-NN
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What if we want to learn
continuous-valued functions?

Output fix)
A

-, Lnput
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Regression

K-Nearest neighbor
take the average of k-close by points

Linear/Non-linear Regression

fit parameters (gradient descent)
minimizing the regression error/loss

Neural Networks
remove the threshold function
learning multi-layer networks: backpropagation
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Large Feature Spaces

Easy to overfit

Regularization
add penalty for large weights
prefer weights that are zero or close to zero

minimize
regression error + C.regularization penalty
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