Ensemble Classifiers

Mausam (based on slides of Dan Weld)

Ensembles of Classifiers

- Traditional approach: Use one classifier
- Alternative approach: Use lots of classifiers
- Approaches:
 - Cross-validated committees
 - Bagging
 - Boosting
 - Stacking

Voting

© Daniel S. Weld

Ensembles of Classifiers

- Assume
 - Errors are independent (suppose 30% error)
 - Majority vote
- Probability that majority is wrong...

• If individual area is 0.3

- Area under curve for ≥ 11 wrong is 0.026
 - Order of magnitude improvement!

Constructing Ensembles Cross-validated committees

- Partition examples into *k* disjoint equiv classes
- Now create *k* training sets
 - Each set is union of all equiv classes *except one*
 - So each set has (k-1)/k of the original training data
- Now train a classifier on each set

Ensemble Construction II Bagging

- Generate k sets of training examples
- For each set
 - Draw m examples randomly (with replacement)
 - From the original set of m examples
- Each training set corresponds to 63.2% of original (+ duplicates)
- Now train classifier on each set
- Intuition: Sampling helps algorithm become more robust to noise/outliers in the data

Ensemble Creation III Boosting

- Maintain prob distribution over set of training ex
- Create k sets of training data iteratively:
- On iteration *i*
 - Draw m examples randomly (like bagging)
 - But use probability distribution to bias selection
 - Train classifier number i on this training set
 - Test partial ensemble (of i classifiers) on all training exs
 - Modify distribution: increase P of each error ex
- Create harder and harder learning problems...
- "Bagging with *optimized* choice of examples"

Ensemble Creation IV Stacking

- Train several base learners
- Next train meta-learner
 - Learns when base learners are right / wrong
 - Now meta learner arbitrates

Train using cross validated committees

- Meta-L inputs = base learner predictions
- Training examples = 'test set' from cross validation

Example: Random Forests

- Create k decision trees
- For each decision tree
 - Pick training data as in bagging
 - Randomly sample f features in the data
 - Construct best tree based only on these features
- Voting for final prediction
- Advantages

- Efficient, highly accurate, thousands of vars

Semi-Supervised Learning

Mausam

(based on slides of Dan Weld, Oren Etzioni, Tom Mitchell)

Semi-supervised learning Motivation

- Learning methods need labeled data
 - Lots of <x, f(x)> pairs
 - Hard to get... (who wants to label data?)

- But unlabeled data is usually plentiful...
 Could we use this instead?????
- Semi-supervised learning

Training Data Size

- Machine Translation and speech recognition are quite successful. Why?
- Plenty of labeled data
 - European parliament proceedings
 - Closed-caption broadcasts
- In MT, we have phrase tables
 - Blue bicycle \rightarrow bicicleta azul
- Side note: this is also a key win for price prediction for Farecast and Zillow.

NLP Challenges

- Document classification
- Named-entity recognition (person, place, or organization?)
- Part-of speech tagging (verb, noun, or adjective?)
- Limited amount of labeled data.
- Labeling is expensive and slow.

Statistical learning methods require LOTS of training data

Can we use all that unlabeled text?

Document Classification: Bag of Words Approach

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns sci.space sci.crypt sci.electronics sci.med

Accuracy vs. # training examples

Naive Bayes: 89% classification accuracy

What if we have labels missing?

X1 X2 Х3 X4

EM Algorithm

Unsupervised Learning: Clustering

- K-means clustering algorithm:
- Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.
- Assign each object to the group that has the closest centroid.
- When all objects have been assigned, recalculate the positions of the K centroids.
- Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects into groups from which the metric to be minimized can be calculated.

20 Newsgroups

Co-training

- Have *little* labeled data + *lots* of unlabeled
- Each instance has two parts:
 x = [x1, x2]
 x1, x2 conditionally independent given f(x)
- Each half can be used to classify instance $\exists f1, f2$ such that $f1(x1) \sim f2(x2) \sim f(x)$
- Both f1, f2 are learnable
 f1 ∈ H1, f2 ∈ H2, ∃ learning algorithms A1, A2

Co-training Example

Without Co-training

Co-training

Unlabeled Instances

Lots of Labeled Instances

iel S. Weld

Observations

- Can apply A₁ to generate as much training data as one wants
 - If x_1 is conditionally independent of $x_2 / f(x)$,
 - then the error in the labels produced by A_1
 - will look like random noise to A_2 !!!

• Thus *no limit* to quality of the hypothesis A₂ can make

Co-training

Unlabeled Instances

Lots of Labeled Instances

iel S. Weld

It really works!

- Learning to classify web pages as course pages
 - -x1 = bag of words on a page
 - $-x^{2} = bag$ of words from all anchors pointing to a page
- Naïve Bayes classifiers
 - 12 labeled pages
 - 1039 unlabeled

	Page-based classifier	Hyperlink-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows errors when training on only the labeled examples. Bottom row shows errors when co-training, using both labeled and unlabeled examples.