CSEP 573: Artificial Intelligence

Machine Learning: Naïve Bayes

Ali Farhadi

Many slides over the course adapted from Luke Zettlemoyer and Dan Klein.

Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
- Learning parameters (e.g. probabilities)
- Learning structure (e.g. BN graphs)
- Learning hidden concepts (e.g. clustering)

Example: Spam Filter

- Input: email
- Output: spam/not spam
- Setup:
- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails
- Features: The attributes used to make the not spam/ spam decision
- Words: FREE!
- Text Patterns: \$dd, CAPS
- Non-text: SenderInContacts


```
TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE SUBJECT.
99 MILLION EMAILADDRESSES FOR ONLY \$99
```

Ok, I know this is blatantly out but, I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:
- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision
- Pixels: $(6,8)=O N$
- Shape Patterns: NumComponents, AspectRatio, NumLoops
- ...

Other Classification Tasks

- In classification, we predict labels y (classes) for inputs x
- Examples:
- Spam detection (input: document, classes: spam / ham)
- OCR (input: images, classes: characters)
- Medical diagnosis (input: symptoms, classes: diseases)
- Automatic essay grader (input: document, classes: grades)
- Fraud detection (input: account activity, classes: fraud / no fraud)
- Customer service email routing
- ... many more
- Classification is an important commercial technology!

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
- Training set
- Held out set
- Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
- Learn parameters (e.g. model probabilities) on training set
- (Tune hyperparameters on held-out set)
- Very important: never "peek" at the test set!
- Evaluation
- Compute accuracy of test set
- Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
- Want a classifier which does well on test data
- Overfitting: fitting the training data very closely, but not

Training
Data

Held-Out
Data

Test
Data

Bayes Nets for Classification

- One method of classification:
- Use a probabilistic model!
- Features are observed random variables F_{i}
- Y is the query variable
- Use probabilistic inference to compute most likely Y

$$
y=\operatorname{argmax}_{y} P\left(y \mid f_{1} \ldots f_{n}\right)
$$

- You already know how to do this inference

Simple Classification

- Simple example: two binary features
$P(m \mid s, f)$
direct estimate

$$
\begin{aligned}
& P(m \mid s, f)= \frac{P(s, f \mid m) P(m)}{P(s, f)} \longleftarrow \begin{array}{l}
\text { Bayes estimate } \\
\text { (no assumptions) }
\end{array} \\
& P(m \mid s, f)=\frac{P(s \mid m) P(f \mid m) P(m)}{P(s, f)} \begin{array}{l}
\text { Conditional } \\
\text { independence }
\end{array} \\
&+\quad\left\{\begin{array}{l}
P(+m, s, f)=P(s \mid+m) P(f \mid+m) P(+m) \\
P(-m, s, f)=P(s \mid-m) P(f \mid-m) P(-m)
\end{array}\right.
\end{aligned}
$$

General Naïve Bayes

- A general naive Bayes model:

$$
P\left(\mathrm{Y}, \mathrm{~F}_{1} \ldots \mathrm{~F}_{n}\right)=P(\mathrm{Y}) \prod_{i} P\left(\mathrm{~F}_{i} \mid \mathrm{Y}\right)
$$

- We only specify how each feature depends on the class
- Total number of parameters is linear in n

General Naïve Bayes

- What do we need in order to use naïve Bayes?
- Inference (you know this part)
- Start with a bunch of conditionals, $\mathrm{P}(\mathrm{Y})$ and the $\mathrm{P}\left(\mathrm{F}_{\mathrm{i}} \mid \mathrm{Y}\right)$ tables
- Use standard inference to compute $P\left(Y \mid F_{1} \ldots F_{n}\right)$
- Nothing new here
- Estimates of local conditional probability tables
- $P(Y)$, the prior over labels
- $P\left(F_{i} \mid Y\right)$ for each feature (evidence variable)
- These probabilities are collectively called the parameters of the model and denoted by θ
- Up until now, we assumed these appeared by magic, but...
- ...they typically come from training data: we' Il look at this now

A Digit Recognizer

- Input: pixel grids

1
2
1

- Output: a digit 0-9

Naïve Bayes for Digits

- Simple version:
- One feature F_{ij} for each grid position <i,j>
- Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$$
1 \rightarrow\left\langle F_{0,0}=0 \quad F_{0,1}=0 \quad F_{0,2}=1 \quad F_{0,3}=1 \quad F_{0,4}=0 \ldots F_{15,15}=0\right\rangle
$$

- Here: lots of features, each is binary valued
- Naïve Bayes model:

$$
P\left(Y \mid F_{0,0} \ldots F_{15,15}\right) \propto P(Y) \prod_{i, j} P\left(F_{i, j} \mid Y\right)
$$

- What do we need to learn?

Examples: CPTs

$P(Y)$

1	0.1
2	0.1
3	0.1
4	0.1
5	0.1
6	0.1
7	0.1
8	0.1
9	0.1
0	0.1

Parameter Estimation

- Estimating distribution of random variables like X or $\mathrm{X} \mid \mathrm{Y}$
- Elicitation: ask a human!
- Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
- Trouble calibrating
- Empirically: use training data
- For each outcome x, look at the empirical rate of that value:

$$
P_{\mathrm{ML}}(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

$$
\begin{aligned}
& \text { rg g g } \\
& P_{\mathrm{ML}}(\mathrm{r})=1 / 3
\end{aligned}
$$

- This is the estimate that maximizes the likelihood of the data

$$
L(x, \theta)=\prod_{i} P_{\theta}\left(x_{i}\right)
$$

Maximum Likelihood Estimation

- Data: Observed set D of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning: finding θ is an optimization problem
- What's the objective function?

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- MLE: Choose θ to maximize probability of D

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

Parameter learning

$\hat{\theta}=\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)$
$=\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$

- Set derivative to zero, and solve!

$$
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=\frac{d}{d \theta}\left[\ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right]
$$

$$
=\frac{d}{d \theta}\left[\alpha_{H} \ln \theta+\alpha_{T} \ln (1-\theta)\right]
$$

$$
=\alpha_{H} \frac{d}{d \theta} \ln \theta+\alpha_{T} \frac{d}{d \theta} \ln (1-\theta)
$$

$$
=\frac{\alpha_{H}}{\theta}-\frac{\alpha_{T}}{1-\theta}=0 \quad \widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
$$

A Spam Filter

- Naïve Bayes spam filter
- Data:
- Collection of emails, labeled spam or ham
- Note: someone has to hand label all this data!
- Split into training, heldout, test sets
- Classifiers
- Learn on the training set
- (Tune it on a held-out set)
- Test it on new emails

Dear Sir.
First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

```
TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.
99 MILLION EMAIL ADDRESSES FOR ONLY \$99
```

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Naïve Bayes for Text

- Bag-of-Words Naïve Bayes:
- Predict unknown class label (spam vs. not spam)
- Assume evidence features (e.g. the words) are independent
- Generative model

$$
P\left(C, W_{1} \ldots W_{n}\right)=P(C) \prod_{i} P\left(W_{i} \mid C\right)
$$

- Tied distributions and bag-of-words
- Usually, each variable gets its own conditional probability distribution $\mathrm{P}(\mathrm{F} \mid \mathrm{Y})$
- In a bag-of-words model
- Each position is identically distributed
- All positions share the same conditional probs $\mathrm{P}(\mathrm{W} \mid \mathrm{C})$
- Why make this assumption?

Example: Spam Filtering

- Model: $\quad P\left(C, W_{1} \ldots W_{n}\right)=P(C) \prod_{i} P\left(W_{i} \mid C\right)$
- What are the parameters?

$P(C)$	$P(W \mid$ spam $)$	
ham : 0.66	the	0.0156
spam: 0.33	to	0.0153
	and	0.0115
	of	0.0095
	you	0.0093
		0.0086
	with:	0.0080
	from:	0.0075

$P(W \mid$ ham $)$	
the	0.0210
to	0.0133
of	0.0119
2002:	0.0110
with:	0.0108
from:	0.0107
and :	0.0105
a :	0.0100

- Where do these come from?

Spam Example

Word	$P(w \mid$ spam $)$	$P(w \mid$ ham $)$	Tot Spam	Tot Ham
(prior)	0.33333	0.66666	-1.1	-0.4

2 or 3 ?

$P($ features,$C=2)$

$$
P(C=2)=0.1
$$

$P($ features, $C=3)$

$$
P(C=3)=0.1
$$

2 wins!!

Example: Overfitting

- Posteriors determined by relative probabilities (odds ratios):
$\frac{P(W \mid \text { ham })}{P(W \mid \text { spam })}$

south-west	: inf
nation	: inf
morally	: inf
nicely	: inf
extent	: inf
seriously	: inf
\ldots	

$\frac{P(W \mid \text { spam })}{P(W \mid \text { ham })}$

screens	: inf
minute	: inf
guaranteed	$:$ inf
$\$ 205.00$	$:$ inf
delivery	$:$ inf
signature	: inf
\ldots	

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
- Just because we never saw a 3 with pixel $(15,15)$ on during training doesn't mean we won't see it at test time
- Unlikely that every occurrence of "minute" is 100% spam
- Unlikely that every occurrence of "seriously" is 100% ham
- What about all the words that don't occur in the training set at all?
- In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
- Would get the training data perfect (if deterministic labeling)
- Wouldn't generalize at all
- Just making the bag-of-words assumption gives us some generalization, but isn't enough
- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
- If I flip a coin once, and it's heads, what's the estimate for P (heads)?
- What if I flip 10 times with 8 heads?
- What if I flip 10 M times with 8 M heads?
- Basic idea:
- We have some prior expectation about parameters (here, the probability of heads)
- Given little evidence, we should skew towards our prior
- Given a lot of evidence, we should listen to the data

Estimation: Smoothing

- Relative frequencies are the maximum likelihood estimates

$$
\begin{aligned}
\theta_{M L} & =\underset{\theta}{\arg \max } P(\mathbf{X} \mid \theta) \quad \Rightarrow \quad P_{\mathrm{ML}}(x)=\frac{\operatorname{count}(x)}{\text { total samples }} \\
& =\underset{\theta}{\arg \max } \prod_{i} P_{\theta}\left(X_{i}\right)
\end{aligned}
$$

- In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

$$
\begin{aligned}
\theta_{M A P} & =\underset{\theta}{\arg \max } P(\theta \mid \mathbf{X}) \\
& =\arg \max _{\theta} P(\mathbf{X} \mid \theta) P(\theta) / P(\mathbf{X}) \quad \square \\
& =\arg \max _{\theta} P(\mathbf{X} \mid \theta) P(\theta)
\end{aligned}
$$

Estimation: Laplace Smoothing

- Laplace's estimate:
- Pretend you saw every outcome once more than you actually did

$$
\begin{aligned}
P_{L A P}(x) & =\frac{c(x)+1}{\sum_{x}[c(x)+1]} \\
& =\frac{c(x)+1}{N+|X|}
\end{aligned}
$$

$$
P_{M L}(X)=
$$

$$
P_{L A P}(X)=
$$

- Can derive this as a MAP estimate with Dirichlet priors (Bayesian justfication)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
- Pretend you saw every outcome
 k extra times

$$
P_{L A P, k}(x)=\frac{c(x)+k}{N+k|X|}
$$

$$
\begin{aligned}
& P_{L A P, 0}(X)= \\
& P_{L A P, 1}(X)=
\end{aligned}
$$

- What's Laplace with $\mathrm{k}=0$?
- k is the strength of the prior

$$
P_{L A P, 100}(X)=
$$

- Laplace for conditionals:
- Smooth each condition independently:

$$
P_{L A P, k}(x \mid y)=\frac{c(x, y)+k}{c(y)+k|X|}
$$

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$:
- When $|\mathrm{X}|$ is very large
- When |Y| is very large
- Another option: linear interpolation
- Also get $P(X)$ from the data
- Make sure the estimate of $P(X \mid Y)$ isn't too different from $P(X)$

$$
P_{L I N}(x \mid y)=\alpha \widehat{P}(x \mid y)+(1.0-\alpha) \widehat{P}(x)
$$

- What if α is 0 ? 1 ?

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:
$\frac{P(W \mid \text { ham })}{P(W \mid \text { spam })}$

helvetica	$:$	11.4
seems	$:$	10.8
group	$:$	10.2
ago	$:$	8.4
areas	$:$	8.3
\ldots.		

Do these make more sense?

Tuning on Held-Out Data

- Now we've got two kinds of unknowns
- Parameters: the probabilities $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}), \mathrm{P}(\mathrm{Y})$
- Hyperparameters, like the amount of smoothing to do: k, α
- Where to learn?
- Learn parameters from training data
- Must tune hyperparameters on different data
- Why?
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data

Baselines

- First step: get a baseline
- Baselines are very simple "straw man" procedures
- Help determine how hard the task is
- Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
- Gives all test instances whatever label was most common in the training set
- E.g. for spam filtering, might label everything as ham
- Accuracy might be very high if the problem is skewed
- E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

- The confidence of a probabilistic classifier:
- Posterior over the top label

$$
\text { confidence }(x)=\max _{y} P(y \mid x)
$$

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct
- Calibration

- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What's the value of calibration?

Precision vs. Recall

- Let's say we want to classify web pages as homepages or not
- In a test set of 1 K pages, there are 3 homepages
- Our classifier says they are all non-homepages
- 99.7 accuracy!
- Need new measures for rare positive events

- Precision: fraction of guessed positives which were actually positive
- Recall: fraction of actual positives which were guessed as positive
- Say we detect 5 spam emails, of which 2 were actually spam, and we missed one
- Precision: 2 correct $/ 5$ guessed $=0.4$
- Recall: 2 correct $/ 3$ true $=0.67$
- Which is more important in customer support email automation?
- Which is more imnortant in airnort face recoanition?

Precision vs. Recall

- Precision/recall tradeoff
- Often, you can trade off precision and recall
- Only works well with weakly calibrated classifiers
- To summarize the tradeoff:
- Break-even point: precision value when $p=r$
- F-measure: harmonic mean of p and r :

$$
F_{1}=\frac{2}{1 / p+1 / r}
$$

Errors, and What to Do

- Examples of errors

```
Dear GlobalSCAPE Customer,
GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .
```

```
. . . To receive your $30 Amazon.com promotional certificate,
click through to
    http://www.amazon.com/apparel
and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .
```


What to Do About Errors?

- Need more features- words aren't enough!
- Have you emailed the sender before?
- Have 1 K other people just gotten the same email?
- Is the sending information consistent?
- Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Errors, and What to Do

- Examples of errors

```
Dear GlobalSCAPE Customer,
GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .
```

```
. . . To receive your $30 Amazon.com promotional certificate,
click through to
    http://www.amazon.com/apparel
and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .
```


What to Do About Errors?

- Need more features- words aren't enough!
- Have you emailed the sender before?
- Have 1 K other people just gotten the same email?
- Is the sending information consistent?
- Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Generative vs. Discriminative

- Generative classifiers:
- E.g. naïve Bayes
- A joint probability model with evidence variables
- Query model for causes given evidence
- Discriminative classifiers:
- No generative model, no Bayes rule, often no probabilities at all!
- Try to predict the label Y directly from X
- Robust, accurate with varied features
- Loosely: mistake driven rather than model driven

